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Preface

Lie series are special series containing differential operators.
Name and concept ot these. series are due to W.Groebner, Instituﬁe
for Mathematics, Innsbruck University. These series were inven-
ted by Groebner to solve special problems in algebraic geometry.
However it was found that these series, named by Groebner after
S.Lie, were very useful to solve differential equations. My
friend Groebner offered this new tool to theoretical physics.
The usefullness of the new method was shown in several papers

by W.Groebner and F.Cap. In celestial mechanics the new method
could compete with other modern methods. So H.Knapp, Innsbruck,
calculated the orbit of the eight satellite of Jupiter using a
special version of the new method and J.Kovalevsky in Paris
célculated the same problem using Cowells method. The two re-~
sults showed excellent agreement.

In the US Dr.Wilson from the Applied Mathematics Section of NASA
recognized first the advantages of the new method. Thanks to his
undersianding and interest NASA offered a research grant for
fqrther irvestigations on the new method. The results of the
investigations are presented in this monograph. The authors
would like to express their deep gratitude to NASA and to
Dr.wilson - without their help and encouragement this book would

never have been written.

Innsbruck (Austria) Ferdinand Cap
the University

June 1966
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Chapter ‘I

Introduction, by F.CAP

In the last few years, Lie series have proved to be an useful fooi
for golving differential equations. Based on the work of W.GR6EBNER,
/1/, Department of Mathematics at the Universitiy of Innsbruck; a-‘
lot of further theoretical development and physical applications
has been published /2-16/.

A series of the following kind:

DL e o)+ wor(e) + LI (1,1)
v=0 H

is here called Lie series; f(z) is any function which depends on the
complex variables Zys By eeceey By and is holomorphic in the neighbor-

hood of the point 2. D is a linear differential operator, defined by:

: 3 ® 3
D= 61(z)3;T + 62(z)az2 + oeneee + 5n(z)azn (1,2)

the coefficients 61(2) represent functions of the complex variables
z1, 22, crees T which are all assumed to be holomorphic in the
neighborhood of the point Zg.

The convergence of the Lie series (I,1) was proved by GROEBNER /1/,
using the method of CAUCHY'S majorants.

The following theorem holds:

The Lie series (I,1) converges absolutely at every point of the z-
space, where the operator D, i.e. all functions 6K(z) as well as
the function f(z) are holomorphic; in every such point in the z-
space a positive number T can be given in such a manner that the lLie

series converges absolutely at least for |t} < T.



The series (I,1) can be used to solve differential equations. We
congider an ordinary differential equation of the order n which

ig given by:
Z(n)(t) = & (£,2,2',2", .......,z(n'”) (1,3)
Eq.(I,3) tancbe wriiten'in: the.form::

Z', = 61(t, z1,'zg, cenny zn)

Z'y = 8,(%s Zyy Zyy eeees Z) (I,4)

Z' l=6n(t’ Z1' Zz, ...-,Z)

Assuming the functions &, (i =1, 2, «.., n) to be analytic the

equation holds /1/:

6i(t, Zys Zpy sevees zn) =

§ ¥ I
= —\,-!-D i(to’ Zys Zos eeeey Zn) (1,5)

1 = 1, 2, seey N
and
= v
d d 1 \
. = = X -
2'y =gt %:(8) = g% Z T
y =0
o0
—E hl Y. - wg £ e
- ! i~ R i~
y =0 y=0
[~ =4
v
= E § 5T D 6i(to, Zys Bpy eeeis zn) (1,6)
V=

(i =1,2, ..., n)



where t , z Zoy ecey 2 indicate that after applying the operator D

1 ?
v-times, %, Z1, Z2, ZB, evsey Zn have to be replaced by the initial
values to, Zyy Zoy eeeey Zoe

Eqs. (I,5) and (I,6) show that the Lie series Z(t)= t —_— D"

solve Eq.(I,4) and Eq.(I,3) respectively.

Lie Series are not only suitable to solve initial value problems
/2,3/, but also to solve boundary value problems /4,5/.

Irrespective of their theoretical significance, Lie series are
interesting from a numerical point of view /5, 6, 7/. Thus, e.g.
F.CAP and J.MENNIG /7/ and F.CAP and A.SCHETT /5/ have applied Lie
gseries to reactor theory. While F.CAP and J.MENNIG were concerned
with shielding theory i.e. treated an initial value problem, F.CAP
and A.SCHEIT's work is a boundary value problem ag it compriges
aspects of shielding and reactor core. Mathematically speaking, the
modified Bessel functions and its derivatives which appear in the
conventional calculations assume so large values, with increasing
distance from the core that overflow of the computer may occur. In
contrast to this Lie series are -appropriate to this problem as they
are broken off if the values become too large and expanded anew.
Furthermore, this stepwise method is favorable insofar as the reactor
itgelf consists of coaxial zones which are appropriately treated by
such repeated expansions of Lie series.

In this monograph (chapter II,III) we investigate the general linear
homogeneous second order differential equation which is the most ge-
neral type of equations containing all 33 equations resulting from

a separation of the Helmholtz equation in 11 coordinate systems. We
succeeded in developing two alternative forms of golutions, one of

them still containing the D-operators, the other one splitting .off



known functions from the total solutions and determining the re-
maining part by means of recurrence formulas and integral represention
regpectively.

In chapter IV, applications to various spezific cases of the differen-
tial equations resulting from the separation of the Helmholtz are
considered.

In chapter V, the general investigations of Chapter II and iII are
applied to some physical problems. l
Theoretical and numerical investigations on Mathieu functions are
presented in chapter VI.

In chapter VII Webers function of the parabolic cylinder are treated.
It should be mentioned, that GROEBNER and collaborators used Lie series
to solve partial differential equations. So the Eauchy Problem of
linear nonhomogeneous partial differential equations of any arbitrary
order with non constant coefficients and of a system of simultaneous
partial linear differential equationsg of first order was solved. Also
boundary value problems of ordinary differential equations have been
golved and methods to improve the numerical convergence of the Lie

gsolutions were found.



Chapter II

The Solution of the General Homogeneous Linear

Differential Equation of Second Order.

1) Solution by Recurrence Formulas by A.SCHETT and J.WEIL.

We treat the equation:

zh(t) - f1(t)Z'(t) - fz(t)z(t) =0 (11,1)
This equation represents the most general type of the equations resulting
from a gseparation of the Helmholtz equation:

t%ft g§'|= o (11,2)
This.equatibn is known to be separable in 11 coordinate systems /17/.
Equation (II,1) may be replaced by the following system of first order

equations:

t'=Z<')=1
2" = 2! = 2, (11,3)
2 = 2} = £,2, + £,2,

This system is solved formally by /1/

a(r) - S L, (11,4)

D beeing a differential operator which is given by:

.2 2 2
D - 22, "2pn, * (£y2, + £,24) 32, (11,5)

in our case /1/.

Evidently,

D Z1 = Z1 (II,6)



and, applying the operator, regpectively, once and twice, we obtain:

D 21 = 22 (11,7)

2
D 2, = f122 + f221 (I[)B)
As we are allowed to split up the operator powers /1/, the following

identities hold:
o (N

V. v-2 .2 v-2
We, = 1772 (0%2,) = 2V7° (£y2, + £,20) 5 v = 2,3, .o (11,9)
Wz, = 0! (D z,) - ¥z, (11,10)

= Du‘ (DOZ1) =

ey
L

Having in mind the formation of a recurrence formula for ﬂ'z1, our
interest is centered on (II,9), the first term of whith may be repre-

sented in the form:

-2
V~%(2,2,) = E (3% 950" 7% %z, -
§=0

using a generalization of the Leibniz rule proved in /1/.

With the help of (II,7) we have

V-2 &2 4.0 v-1
pY"%(¢,2,) ..g "¢ p9£,D 7z1 (I1,11)
and, in analogy,
DU-Z(f 2 ) -2 (U‘—Z) qu D\r-2-9
2%/ = & $ 2 %9 (11,12)

From (II,9), (II,11) and (II,12) we obtain

Yz, - ';_j ("}2) (13‘31‘11)"'1"’z1 + D?fzn“'2’9z1)
=0

or, in view of

D9f1(zo) = f1(?)(zo),



1z, = g “2) (fsg')(zo) e P fg')(zo) n"2'7z1) (11,13)
A\ .

which allows all D"z1 to be determined by recurrence, as Doz‘ and

D'z, may easily be calolated in'a direct way (see (II,6), (II,T)),

Z(t) - 'Z ;t'vi'D“Z1 - ; _E:} Z(UEZ) (ff?)(zo)n"-1‘,z1 . .

e 18 (2 )02 02 ) 4 a4 b3, © o (I1,14)

This form of solution may be used for the numerical calculation ef Z(t)
in a computer; neverthelesgs, we attempt to find an alternative way by
splitting this form of solution into well~known functions anq remaining
terms for which recurrence formulas will have to be obtained.

At firet, we will show that it is generally possibla to splitt sin and
cos or sinh and cosh, from the total solution of Eq.(II,1)..

According to (II,4), the solution may be written:

i‘t" ¢ it" ¥
Z2(t) = .F!-Dz1= 2 G,-!-(D1+D2) 2,

y=0 [¢)

For any decomposition of D, we may write /1/:

v v ¥ v = ¥ _r o $-i_ d-1.
Sv!Dz1=iW(D1+D2)z1=ZWD1 2,0+ Yy ST ) Dy DDz
=0 V= =

In our case, D reads (II,5):
2, ., .2 -1
D = 3%, + 2z, 321 + (f1(z°)z2 + f2(zo)z1) 52,

The operator D1 chosen in the following decomposition D = I)1 + D2 is

known to generate the trigonometrie (hyperbolie) functions when applied

to Zys /1/:



The total solution, therefore, is given by:

z(t) = z1coah(tVf-2) +.vz§|2- sinh (Zv;';) + Zz—‘: Z I}:-"ipzl)i-1z1

;f f1 - -1’;» and f, = -f;-=._. ’ i.e.Vf1.' and Vtz. are purely imaginary,
cosh and sinh are to be replaced by cos and sin. Q.e.d.

For the term
Q@ v

v
Il V-i o _de1
; v g Dy” T DD 2y

it will be necessary to obtain recurrence formulas.

Replacing Di"‘z1 by (II,13) we get:

)
::_V! 322( $) (%, 5y) 287295, 4 £, (035,
Vs -

+ 2, 01‘22 +'D2'z1 - Z% D\’z1 (1£1 &)
“-

In order to avoid the evaluation of this threefold sum which seems

to be rather horrible, we will follow another way of deriving recurrence

formulaass

Using (I1,9) we obtain:
D“-z1 - 2 (£,2, + £,2,) V= 2,3, ....
where the first term of the right side may be written as
“2(t,2,) = 2,0" %_T (°3%) e, 075,
and the second term:
°?(2,2,) = 1,092, Z 350f £,0° 7252

so that:



D>
D, =z, ,§—Z1 + f2(z°)z1 ‘)_—22

r
D, =,§: + :t‘1(zo)z2 .5-—22

. v
In so doing, we calculate ; i D.;r Zg the first terms of which
U= U"

are;
D1°z1 = 2,
D11z1 = 2,
D12z1 = f2(z°)z1

D, %z, = £,(z,)z,
2

D%z, - £, (zo)z1
2

D,’z, = £,7(z,) 2,

or, generally:

w v
D,z = £, (zo)z1
2V +1 hY
D, z, = f, (zo)zz,
so that:
=] = v =
A 42 0.2V, 2_ ke D 2¥+1,
TR B N (av)r 1 51 7 L Tawe)T 2 1"
=0 2y = 2y +1
=E % & (2 )2 +2 % f‘r(z)z
= 2215! 2 o’ ™1 b 2y+1)! "2 0’/72

Evidently, these series represent:

b
. 2 .

T Dy 2z, = 2, cosh (tsz) +“_‘ sinh (tqu)

J=0 f2

N8
%%



Ve

. ; v=-2 y =2 V=2,.Q v-2-9
Pz, = £,09%2, « £,0" %, + 2 ("t z, +
=2 Va? V=2a
+ (V=) p%%, 0V %, =
Q 2 1
Q-
v-a, Va2 V-1 Va2
- f1D Z, + f2D z1 + Ro - f1D z4 +.f2D z, + Ro

Applying the formula for D'z1 to Dv-1z1 and Dv-221, we obtain:

2. v-3

2. v-4 2. V=2
D zy = f1 D z, + f2 D z

z, + R, = £.°D

2 Vet
1 1 1 g v D Tz + Ry

(11,15)
where sums and terms with products of f1 and f2 are understood to be
contained in R1. As we require the exponents of the operator powers

to be equal in the general recurrence formula, we have to show that

is generally possible to obtain expressions with equal exponents in

the powers of D. Applying protedure of (II,®) to the first term of
'(11,15) and denoting all sums and terms with "mixed" products by R,,

we obtain:

3. v-4 2_v=4
D"z1-f1D z2+£2D z1+R2

in the game way:

= f 5Dv'6z + f 3Dv-éz + R

\J
D7z, = 1, 2 + I g v Ry

and, generally:

k_v-2k

v 2k‘1ﬁ”'2kz2 + £,°D + R

Dz, =f

1 1 2k-2

PuttingV-_“. 20, we obtain with a slight change in the notation of the

remgining terms:

2k-1_2A=-2k
D z1 = f1 D Z, + f2

k. 2A-2k
D 2y + Sp,



which, with A = k, becomes:
2A 22-1 A
D"z, = f, 2, + £,72, + Sy, (11,16)
2A = 2, 4y 6, co-e

Similarly for odd VW = 2A + 1 we obtain:

2A+1 2A 2a-1 A
D 2, = £,z + £ £,2, + £,°25 + 59, 4 (11,17)

With the help of these results, the general solution reads:

o0
Z()=Q_o 2)T ° z1*q_ Zaa)T 2 % e

-] -]
tZQ 2&"1 Q 2Q+1
= 2 o (f1 z, + £,52, + qu) + QE T—T2Q+1 +
+ £ 2 4 2%, 48 ) + z, + tz
1 2% * T %y + S04 1 2

2 2
- 2, ’T[cosh (v£,) - 1 - L@L)—] + z1[cosh SRR 3—11-]
1

2 2
(11,18)
3 f
+ g, %—1- [sinh (t£,) -tf, - it_‘;".t'.)_] vz, -f—g-[sinh (t2,) - tf, .(EQ_L]
1

z, ) (tvf-;)B] = e
+F-2-|-|:s1nh (tV?Z) -+t - ——]+ QZ-:J!- Se (25024125181 %,)

If £, = - ¥, and 1, = -1,
1 (+%,)° +%,
z(t) = z, T1— [cos's (¢3,) -1 = —5—— |+ 2, | cos (tva) R
_(F) 7, (+%,)> (11,19)
zz-y;-— sink (+2,) - ¢f, - =7 |+ % [amf, (tF,) = 42, - -3+—]
Z; (tV'A )3
+V_f=2|- [sin (t V'?z - tv-;; (z orZ11Zp0tr ;) + z,

11



‘With the help of (11,16). (1,17 (II,13) the following equation

is seen to hold:

A=2 ] 5
: 2A-1 A 232y . (2Q) ~2h---2¢
+ 1 z, + T, z1=g( Q)f1 D z, +

822
A=2
2A-2 (20+1) 2A-3-2¢ +
+ E (29+1) £, D z,
A-1
+S (2" 2) 1, (2¢) p2h-2-2¢ 5, (11,20)
= 25-2 (2¢+1) 2A=-3~2¢
+§ (5e+1) T2 D 24
where
27-2-2; 2A-1=2¢ 2a-2-2¢ 2A-3-2¢
D 2y = D z, = f1 z, + f1 f2z1 +
o
2A-3=2¢Q ~1=Q
+ £, £,z + f, z, + 52}.-1-2Q (11,21)
2A=3-¢ 2A-2-29 2A-3-29 A=1=Q
D z, = D z, = £, z, + £, z, + 82;\_2_2Q (11,22)
2A-3-24 2A-4-2¢Q 2A-5~2¢ A-2~-0
D z, = f1 z, + f1 £z, + £, z, + 82}\_3_2Q (11,23)
2A-2-2¢ 2A-3=-2¢ A=1=Q
D 2, = £, 2, + 1, z, * SZA—Z-ZQ (11,24)

With the hglp of these formulas SZA becomes:

S:(z;. 2y f1(2q)f12A-2-2Q22 .
. a-t (%A 2) :, (2Q)(f 237205 5 4 2010, 4 s
g MY Za ¥ Sap-1-29) +

A=2 zx-

(241) 1, 2A=3=2¢ A=1-¢
(541 T4 (£, 2y + 5 z

Z 7 * SZA-Z-ZQ) +



o=l a2y L (2¢), A-1-q
+ 3:5 (30) £,°°¢s, z, +

=2
2a=2 (2q) 2A-3-2q
+ 2_: ("2, £, (f, 23+ Spuu0.0,) *

(11,25)
+ 2:_ 2¢+1/ *2 1 th 2%1
A=2-9
+ £, z, + SZA-B-ZQ)
Similarly, we obtain for 52A+1:
2A 2A-1 A
Spnes * T4 7y + 1, f,2, + £,7, = (11,26)

A-1 A=d
_ jz:: (22—1) £ (2q) D2A-1—2Q22 + (2k—1) f1(2Q+1) D2A-2-2Q22
¢=0 Q 1 =

2q+1
A= . -1 2r-1
Q 2 1 2 1
Q= Qt
where
2A-1-2¢ _ n2A=2g _ 2A=2¢-1 A=g
D z, = D z, = 1, 2, + £,0 Yz, + Sz)\_2Q (11,27)
while for
D2A_2_2Q22 = D2A_1-2Qz1 «es see (II,21)
1)27"2'2%1 ..s see (II,22)
and
D2A—1_2Qz <.« see (II,21) again.

1

Congequently, S2A+1 is given by:

13



=L 2A-1 (2Q), 2A=2¢-1
Sape 'g( 2o ) T E 2p *

t (ZA-1) I“1(2Q) (£, + Son-2q) *

Q=0

2A-1 (2Q+1 ) 2A=-2=2¢ 2A=3=2¢
t( (£, 2y + £ £224 +

2Q1>1 -1
A=1=g 2A 1 (2¢), A=-1-¢
+ £, 2, + Sy _4_ 2Q) + E (°5.7) 1, £, z, +

.Q_L (2)...1) t, (2¢) (£, 2A-2= 2Q N f12/\-3-2qf221 .

-1 .
2a-1y , (26#1) o, 24-3-2¢
+ 8y q.2) * Z (3es1) T2 (f 2y ¥

£ A-1-Qz

2a-1
+ £, 4 ¥ Spu ol 2{‘) - £, £,2,- (11,28)

The first three Sg which have to be calculated in a direct way

are:
22
S, = - ?;' (11,29)
f
2
81 = - gr'z1 - 2,
1
52 = 0

By means of (II,18), (II,25), (II,28), (II,29) the solution of (11,1)
may be calculated numerically.

In conclusion we found two alternative representations of the solution,
one of them still containing the D-operators and the other one split

up into trigonometric (hyperbolic) furictions and remaining terms for

which recurrence formulas could be derived.

1L



Remark; In the course of our investigations, we attempted to solve
Eq. (II,1) by using the method of Laplace transformation. But as it
turned out, this method is not advantageous in our case, according

to the general theory given in /18/.

2) Solution by Iterative Method, by W.GROEBNER.

GROEBNER split the Lie operator D up in the following way:

D = D1 + D2
where
D, =z + {(£,(z2 )z, + £,(2 )z,) 9
1 - "2 0 2 70’71 1Y70/72 6z2
9
Dy = 35
o

the philosophy being his intention to put most of the operator

into the main part of the solution and to keep only D2 = 3%— for
o

the formation of the remaining terms.

Using matrix formalism, D1 reads:

&)
0 f2 az1
D, = (z1, z2) , = (z1, z2) AV (11,30)
! £ 3
Zo
where;
0 f2
4= (11,31)
1 f1
and
_ 2 , o )‘1‘ (11,32)
v = 3z, oz, :

5



Congequently,
D1.(z1’ .z2) = (21’ ZZ)AV (211 22) = (21’ 22)A (11,33)

as V(a0 2,) = 1

Applying D1 once more, we obfain}

2
Df (21 ’22) = (21 ,ZZ)AV(Z1,ZZ)A = (21 !zz)A (11754)
and generally:
D:‘ (21,22) = (21 ’zz)Av (II’BS)

The main part of the solution is, therefore, given by:

v z v Tz

1 1 1 1 t Y 1

e = Z ] = E 5T A (11,36)
: z} v=0 Z5

Now we have to calculate 3{ We assume A to be diagonizable, i.e.,

A

. N

! (11,37)

Ay

As is well known, A, and A, are obtained by sclving the sgecular

1

equation:

2
e - 4] - =0 (11,38)
-1 =
£ £
1 + 1
A1,2 =7 |7 + f2 (11,39)

Supposing A, # Ay » T and ™1 can be calculated:

£ f

2 2 T ; 2 1
T = ; (T ) = ?—Txgjx—j . (11,40)

A A, 2 1 -f f

16



From (II,37), we have

s=1ar” (11,41)
and
M = (o) - ) ear e (27! -
= rAvy”! (11,42)

With the help of (II,42), (II,36) reads:

Consequently according to /1/ the solution may be written:

Z1(t) tD [z, et(D1+D2) z,

Z,(%) z, z,

A J
Z' Sft t a 21
- . + S {=3) g p . dr

[¢] a

Tnis integral can be evaluated by an iteration method, according

to /1/. The symbol a added after the bracket is to indicate that after

tD
aprpnlication of the D-operators Zys 25 have to be replaced by e 1
tD

and e 25, respectively.

21
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Chapter III

The Solution of the General Inhomogeneous Linear

Differential Equation of Second Order by A.SCHETT and J.VEIL.

1) Solution by Iterative Method.
The equation in gquestion reads:

™(t) - f1(t)Y'(t) - £,(8)1(¢t) = f3(t) (111,1)
where we suppose fi(t) to be regular in the considered domain.

The following system is equivalent to (III,1)

Ys = t! =1

(111,2)

Yé = f3 + f2Y1 +-f1Y2,
which is formally solved by /1/:

v
T(t) = S %ﬁ-D“y. (111,3)
v=0

In our case, D is given by

D = 9 )

d
ayo + yz.ay1 + (f3 + f2y1 + f1y2)

ER (111,4)

The small letters are to indicate that after application of the
operator the Y-variables have to be replaced by their initial
values. According to GROEBNER /1/, we split the operator in the

following way:

+ D, (111,5)
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3 3
D, = ¥, £ + (f3 + f,5, + £,3,) 3, (I11,5a)

?
D, = A (111,5b)

where D1 will produce the main part and D2 the correction terms.

In view of that, the total solution reads /1/:

Y2(t)\‘; - % Y2
=L L v( ) Si—'—*l- ( )IAL‘T (111,6)
Y1(t)J p=0 v Jq J1lk3

where the symbol a added after the bracket indicates the fact
that after application of the D-operator Y90 Y5 have to be re~

tD1 tD1
rlaced by e ¥, and d Yoo respectively.

We now turn %o an evaluation of the first term at the right side

of (III,6):
@ t(yz——aa + (f3 + f2y1 + f1y2) ——aa
Y uf 92 ¥4 Y2 Y2
or 04 = € .
=0 ° 4 I
D1 may be written in matrix form:
]
1 f1 0 3;:
d
D1 = (y2’y1 !1) 0 f2 0 'é—y—z' =
o] f3 1 0
= (¥ps ¥4s 1)avV (111,7)
where
1 f1 0
4 =00 f, 0 (111,8)
0 £ 1

19



and
T
: 3 8
= | — — 11,
B 4 (ay1: 37y’ 0) (111,9)

Applying the operator to the variablé, we obtain:

D,(¥,09401) = (3559401) AV (y,03401) = (3,07451) B (111,10)
where

B = AD (yz:y1,1)-
Repeating this operation, we get:

2 2

Dy(¥50¥901) = (¥50¥421)89(55574»1)B = (¥5s7,51)B (1I1,10a)
and

D3¢ 1) = ( 1) (y5050:1)8° = ( 1)8’ b

1\ T 2274 = (Ype¥qs AVyz.y1, = \Ypr¥q (III,10)
and generally:

Dy (3503921) = (3559,,1)8". (111,10¢)

For the homogeneous case, a repeated application of D1 results
in multiplying the expression by the coefficient matrix A itself,
a rdle played by the more complicated matrix B, in our case.

The main part of the solution is, therefore, given by:

o o0 Yo

i v z: v T
t V) t v
o ol v = o B Yy (111,11)

v=0 vy=0
1 1

using (AB)T - BT a7,

Now we have to calculate Bn;



"

>

- O

o—l

o o

'

H o
=
e

(@)
o
O
Hy
lo]
O

Ay 0 0
r'er A= o A, O
0 ) Ay

by solving the secular equation:
[\E - B] = 0,
or, in extenso;

A.-f1, -1’ O

2
-f,, A, O =  A(A° - Af, = £,) = 0

T and T are, respectively, given by:

A1 Az 0

T = f2 f2 0

f3 f3 1

and
‘Az’
-1
T f2 }\1 ’
-A1f3+A2f3, —A’f2
\

21
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(111,12)

(IIIo13)

(111,14)

(I11,14a)

(I11,15)

" (I11,16)

(111,17)



From (III,13), we have:
B - AT
and
2 . (arHear!) ..... (oArh) - AT,

8o that we obtain for (III,11):

y=0 1 y=0 1
¥2
- v e )IA T [y ] -
y=0 v! 1
v
2y 0
v=0 v [») v
- t
- (r71)F 0 :E:: s
1 4
y=0
0 0
A1t
€ 0] 0
At
- (T")T 0 e ? 0
A
0 0] €
Consequently, the total solution reads:
A1t o]
Yz(t) ¥o e
Aot
Y1(t) - etD ¥y 1= (T-1)T 0 € 2
0 1 0 0
t
a 2
. J‘ L'L?;}L[DZD“ e |y dz
=0 ' 1 Fa

22
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(I11,18)

(111,19)
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where the perturbation integral can be evaluated by an iteration
method according to /6/; its evaluation is promising insofar as
it offers several posaibilities of adaptation, viz., by choosing
the numbers of iterations, the step size, and the break-off of

the a-summation.

2) Solution by Recurrence Formulas:

Applying D vtimes to ¥, and splitting up the operator powers we

obtain:

v-2,.2 V=2 -
DVy1 =D (D y1) =D (f3 + £y, + f55,)-

Evidently

v-2, . (v-2)
f3'_ f3 .

In order to avoid meaningless expregssions, we have to define:

DH -0 for udo.

Using the well-known Leibniz rule for the D-operators, we obtain

for the second and third terms of (III,21), respectively:

= -2
V-2 v V-2-
D f = i ( )DQf D Ry =
(£375) £ V¢ 1 2
=2 [u-2
- ( )DQf p¥-1-¢
= ¢ !
and

-2 V-
V-2 5:; Qe pM=2=¢
D (f2y1) = ) ( QjID £,D Yq0

so that the recurrence formula for DY is given by:

23
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_ -2 ,
My, - t; [fB("’z.) + (";2) {D‘ff1n""1"‘y1 + p%¢,0Y Z'Qy” . (III,26)
Q-

With the help of this result, the total solution reads:

(%) -i— My, - -:‘):, [fB("'?) +f;2)

v-O u: =

v-1- v-2-¢_
.(DQf1D Qy1 + DQf2D Qy1ﬁ + ¥y o+ by, +

+ ;—2 D’y + ;—3, Dy, + Z—A; vy, (I11,27)
This formula is not difficult to code. It is, of course, possible
to split known functions from the total solution, also in this case;
one of the ways in which this splitting is possible is evidently
equivalent tc the method used by GROEBNER, his part etD1 zf
essentially being the hyperbolic (trigonometric) main ter; of our
method. - In contrast to GROEBNER'S method, no way of estimating the
error made by breaking off the computation seems to exist for the
recurrence formulas, up to now. Nevertheless, they may prove to be
gsuperior to the first way, from a physicist's point of view, owing
to their easier coding and the fact that an analytic method of

error egtimating may be replaced by experience on the machine, for

practical purposes.
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Soluti

As we will

5]
—
ct
~
1

represents

geparation

Chapter IV

on of the Equationa Resulting From a Separation of the

Helmholtz Equatioris in Special Coordinate Systems

by A.ScHETT and J.Wgik-.

see below, the equation

Fh
ck
~
o3

the most general type of the equations resulting from a

of the Helmholtz equation:

A@ b uzé =0 (IV,1)

This equati

on is known to be separable in the following 11 coordi-

nate systems /17/.

a) Rectangu
in these co

in the othe

— +

%

+ (n

njeg

dz

Evidently,

£,(%) -

lar coordinates: the equations resulting from a separation
ordinates are extremely simple compared to those occurring

r systems insofar as:

X
—5 = (o, + a3) X =0

Y =0
2

+ a3)Z =0
0
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and
1,(t) = const.

the solutions of these equationa respectively being trigonometric
and hyperboliec functions depending on the sign of the constant.

b) Circular-Cylinder Coordinates (r, ¥,z):

2 @
424,18 (Zea)ra0 (17,2)
dr r dr b o

2
9.—; +a ¥ =0 (1v,3)
ay

a®z .2
—5 + (x" + a3)z =0 (1v,4)
de

In (IV,2)
-1

and

£,(t) = %% + oy

the solutions being Bessel functions. (IV,3) and (IV,4) are analogous
to the ecase of rectangular coordinates.

¢) Elliptic-Cylinder Coordinates GV, 7, z):

2
g—g - (a2 + ag a2 coah%?)H = 0 (17,5)

dy

2
¥ (a, + oy o’ coszv)w =0 (1v,6)

a¥?

2
E—% + (u2 + a3)z =0 (1v,7)
dz

26



In (IV,5-7)

[
(o]

£,(4)
where as

£,(t) = a, + ay a

2
£,(t) = -a, - a5 a

-"

fz(t) - cx3 -

(1v,5) and (1V,6) are
logous to the case of

d) Parabolic-Cylinder

2

d M ( 2
— - « + a m )M
ap2 2 * 93

2

d N 2
—= + (a, - a,¥°)N
d”2 2 3
a?

Z 2
5+ (n + a3)Z =

Evidently, in (IV,8)

f1(t) = 0

£,(t) = a, + a3t2;
In (IV,9):

f1(t) =0

£,(t) = -a, + a3t2

2-coshz‘k in (IV,5)
cos t in (IV,6)
const. in (IV,7)

solved by Mathieu functions, (IV,7) is ana-
rectangular coordinates.

Coordinates (p,V , 2):

27
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end in (IV,10):
f1(t) =0
= const.

: 2
_fg(t) = - - ag

(1v,8) and (IV,9) are solved by Weber functions; (IV,10) is again
analogous to the case of rectangular coordinates.

e) Spherical Coordinates (r, 6, ¥):

2 % '
&2 28, (W - Dr=o (1I7,11)
dr r dr bl

a
+ coty 48 -— e =0 Iv,12
:3! . as * (a2 gin ) ( )

_ 7 + a3v =0 (1Iv,13)
a!
In (IV,11) we have:
-2
ft(t) - =
2
fz(t) = <% + =5,
in (1v,12):
£,(t) = -cot ¢
fz(t) = —a2 + —'—2—

in (IV,13):

lo]

f1(t) =

£,(t) = -a, = const.

3
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(1Iv,11) is solved by Bessel functions, (Iv412) by Legendre functions
and (IV,13) is trivial again.

f) Prolate Spheroidal Coordinates ()7,3,?):

2 a
g_g + coth-y-d—H- + (12 a® sinhzqz -a, - ——}Z—)H =0 (1v,14)
d'?' d7 sinh bd .
a%e de 2.2 ¢ '
— + coty — + (x"a“3in"g + a, - —-2}——-)9 =0 © (IVy15)
a3y 4y 8in Yy
a’y 2 ‘
—5 t O3 ¥=0 {1v,16)
dy
In (IV,14)
f1(t) = =coth ¢
o
£,(t) = ~w?a’sinh’t + a, + —}7— ’
sinh™ ¢
In (IV,15)
f1(t) = -cot t
o
£,(t) = wZa%sin®t - a, + g
sin t
In (IV,16)
f1(t) =0
£,(t) = o4y = const.

(1IV,14) and (IV,15) are solved by Legendre functions, (IV,16).is

trivial again
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g) Oblate Spherical Coordinates (:7,3,1');

2 a
-‘% + tanhvﬂ + (n2a2cosh2? - a, + ——-Lz—)-H = 0 (1Iv,17)
v d'? cosh™

a%e a0 2 2 @
=+ cotV == 4+ (-x“a sindT + a, = —%).O =0 (1v,18)
ad asJ sin

dz!
—5 + a;¥ =0 (1v,19)
v 3

In (IV,17) we have:

f1 = -tanh ¢
o
f, = -uzazcoshzt + a, - —_—
2 2
cosh t

and in (IV,18)

f1 = -cot ¢

a
f, = uzazsinzt - o, + —1
2 2 . 2

sin t

and in (IV,19)
f1(t) - 0

fz(t) - —ds.
(IV,17) and (IV,18) are solved by Legendre functions, (IV,19) is

trivial again.

h) Parabolic Coordinates (u,¥, 7):

2

9—% L1 (u2p2 -a, - —g)M =0 (1v,20)
dp p dp )

d°N 1 an 2 2 ¢

S+ -+ (n'v +a2-|—%)N=O (1v,21)
av vV dv v

30



In

in

in

dy 3 '
—= + a’¥Y = 0
%
(17,20)
1
f1(‘t) = —Tt‘
2,2
fz(t) = -« % t
(1v,21)
1
f1(t) = —;
2,2

fz(t) =- =%t

(1v,22)

i
(o]

f1(t) =

£,(¢)

[+4

3

(Iv;zé)

!

-2
+ @y, + =%

a
- o + —

conat.

(IV,20) and (IV,21) are solved by Bessel functions, (IV,22) is the

trivial trigonometric case.

i) Conical Coordinates (r, 8, A):

In

2

CR,28 ., (2 ..o (1v,23)
ar r dr r
2,
9202y (2-2) 9—3% - (2% - (0%e®) B4 (0 - a)0 =0 (17,24)
d
2
(62422) (P=a2) 84 4 0 (2a2- (Pee?)) P (appleg Wm0 (19,25)
daAa da
(1v,23)
10
2 %
f2(t) = - + -t—z'
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in

in

(1V,24)

(242 - (b2+e?))
(£2-b%) (c?t7)

2
a --a2t

(+2-02) (c2-%2)

£,(%) =

fz(t) -

(1v,25)
4 (b2ge-2t°)
2
azt - a3

(b%=4%)(e%t")

f1(t) -

£,(%) =

(1v,24) and (IV,25) are solved by Lamd functions, while the solution

of

3)

In

(1v,23) is given by Bessel functions.

Ellipsoidal Coordinates:

2 2 2 2 2 4 2
A°E (29 (b +e7)) 4B (n + a + a,)
7 L 37 2 EBE=0 (1Iv,26)

dr’z + (vz_bz‘) ('vz_cz) d—?* (V2_b2)(_?2_cz)

a%e - (2% - (b2+02)),gg - (x23% & a3 + a5) °

232 (32-02)(c2-%) a3 (W-b)(c*-¥) =0 (17,27)
da\ A(212 - (b2+62)5 an (n2A4 + a5A2 + a,)
Z TRy (2t an (4212 (2222 =0 (1v,28)
(1Iv,26)
(-2t2 + (12 + %))
£,(t) =
1( ) (t2 _ b2) (t%-cz)
2h et? - g
£ - t b )

( 52-b2) (+2-02)
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in (IV,27)

t(2t2 - (b2 + c2))

f£.(t) =
1 (:2-02) (222)
2.4 2
£(4) - nt o+ a5t + a,
2 (t2_b2)(c2_t2)
in (IV,28)
t) t((b2 + 02) - 2t2)
f t =
1 (22-12)(c2-17)
_(u2t4 + a3t2 + a2)
£ (t) =
2( ) (b2_t2)(c2_t2)

All of these equations are solved by means of Lamé functions.

k) Paraboloid Coordinates (u,¥, A):

i, 1 (2 - (bre)) au , (x2u® 4 azy - a2)

dp? 2 (p-b)(u-c) dau (u=b)(u-c)

M =0 (Iv,29)

a°y 1 (2v - (b + ¢)) 4W (uzvz + oV - ay)

— + - — 4 N =0 " (IV,30)
dv 2 (b-v)(c-») dv (b=p) c-v)
A 1 (24 - (b + ¢)) AN W% . agh = .

5 + = AGS =0 (1v,31)
da 2 (b=A){A=~c) da (b=r)(A=c) _

In (IV,29) we have:

SRR ST
2,2
£,(%) = R A
' (t-b) (t-e)
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in (IV,30)

-2
£,(%) - 3 §§-I)°(c-t§)

-u2t2 - d3t + ay

28 = —

and in (1%, 31)

. 1 (2t - (b+c
f1(t) =2 éb-ts ét-cg

uztz + ajt - oy

f2(*) - (b=t)- (t-e)

The golutions are Baer functions.

Apparently, some of these equations have singularities; as the Lie
solution to be discussed is only valid for regular functions f, and
f2, we have to exclude these singularities. In the following general
derivations we restrict consideration to regular domains.

We are going to apply the methods presented in Chapter II and III to
the equations resulting from a separation of the Helmholtz equation
in 11 coordinate systems /17/.

In presenting our results, we are going to adopt the following prin-
ciples of ordering: the invidual types of equations are subsumed
under somewath generalized types for which the two formalisms are
carried out until a reasonable vicinity to numerical evaluation
seems to be reached. Under each type the special cases in which it

appears are mentioned.
Type I:
zn(t) - cz2(t) = O,

¢ being a constant.
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This type contains all three separation equations in rectangular
coordinétes, two of the equations in circular-cylinder coordinates
and one equation among the equations in elliptic-cylinder,.parabolid-
cylinder, spherical, prolate spheroidal, oblate spherical, and para-
bolic coordinates, respectively.

The equation ban be wriiten.inithe form:.
t' = 2! =1

Zl

]
N
h
5]

Z'I = Zl = cz

while the Lie operator is given by:

3
D=Fz"* 23z, * % 32
) 1 2

The solution of the systems is given by /1/:

¥ v
z(t) = 57 D Zy
v=

the evaluation of which is extremely simple in this case, as

D z2, = 2z,
D'z, - =z,
_D2z1 = Cz,
D521 = CZ,
D4z1 = 0221,

or generally:
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80 that we may write the solution:

oD 2 +1

2v
% t v _
Z(t) = UZ T &1 + 2 Towe)T © %2 =

Z2
= 2z, cosh (tv:) + V_a— gink (tY?:)

or for ¢ = -¢"
Z2
2(t) = z, cos (s{F) + =2 sin (+\T),
\ec
respectively, depending on the sign of c. Evidently, no recurrence
formulas are necessary in this case, as the solution reduces to its
"main part" split-off from the total expression.

Using the method presented in Chapter II,2 we obtain in our case

O o] -a—
D, = (z,, z,) 0z B
1 120 |, 0 3! = (24, 2,) 40
6z2
with
0 c
A= ’
1 0
T 9 d
V = (——— ’ ) ’
621 az2
and
G}
D, = = .
2 azo
Evidently,

v
D1 (ZT’ 22) = (21: 22> -Av:

while the part of the solution due to D1 is given by:
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——
N
-

(?1(t)\= 04 (21\= SCo2 e
\ )/ ‘oo

A vi Z Al
zz(t \zz/ 2
Diagonalizing A by
T AT = {]
the eigenvalues resulting from
A -c
|rg - &l - =0
-1 A
are
+
My =" Ve!
0T and 777 are given by:
fr i / c c \
(hy a)
and
Ao '}1
-1 1
T =S, ’
2 ™M 4
'LG? c
respectively.
The total solution is given by:
z, (t) etVe 0 2
1 -1 T 1
= (7 ) -tve/ T +
Z,(%) 0 € z,

c 5 ] et e (e

Evidently, this perturbation integral venishes as there is no

zo-dependence in the operator D.
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The RS oi Eq jion):

oy

() +§ 28 - B v o) a(v) - 0 (17,32)

- a, b, and ¢ Qoiné éonstants.
This equation appears among the équations of the circular-cylinder

. coordinates (a = 1) and of the spherical coordinates (a = 2) and
donioai coordinates. In t = O the equation is singular. We solve the
equation for the domain f > o.

We agein replace this equation by the following systenm:
'. -

oo gy -

2* e Z) e~ 2, 4 (b +¢) 2

B Bl 2L T gy 4 1

while the Lie operator is given by:

D= —2—_+.z 2 -2 (2—— +c)lz 2
2z 2 32 27 g 2 1o
o o *o %2

The solution is given byethe following formula derived in Chapter IT,1

z(t) F%:) _:_! ¥z, - Z; :_"' g (uc-az) (f1(Q)(zo)DV-1-QZ1 .

+ fa(Q)(zo)Du-z-Qz;> + 2z, + tz,

With the help of;
ISP
%G)-%+c

_fTSQ)(t) - (-1)Q+1Q! at-(Q+1)

2,8 (4) = (-1)%(er1) 167 es

¢
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where 609 is the Kronecker gymbol,

we have in our case:

2 -: —tu—' ﬁ(“gz) {("1)‘&1&!3:0'(9*1)D9-1—Qz1 .
V= =5 .

. (42 -2a '
+ (-1)“’(Q+1)!z° (et )+ 06-°Q i Qz,l} + z, + t255,

or, splitting off known fﬁnctiona from the total solution:

-2 -a b
z2(t) = z, [(——o-) cosh (t — -~ 1]+ z4 [coah (t —5 ¢+ e) - 1]+
a z z
o ¥ )
5+ C
-z, -a z, -a .
+ 2 (—=) sinh (t(—)) - 1|+ z, ———— “lsinh (t(—)) - 1| +
2 . 1 a |2 )
a z (= =— °
o z
z, tQ .
+ -—!- Sq(z°.§1 o32nf-1 :f?)
5+ ¢ =0 Q :
z
o

With '52}\ and 52}\*_1 y Tegpectively, given by

o

&-1 =i (i2-2) (-1)2Q+1(2Q)!azo '(2‘2*1)(_% )ZA-Z-ZQZZ .
o=

A-1
+Q§ (2;\;2) (_1)2Q+1(2Q) !azo-(2g+1)(_;_:‘.)2}‘-5---29(2L2 *_°)’1. .
°

b A==y
+ (== + ¢) z, + 8 +
: 2 ¥ S2p-1.2
o
=2
2_—0_ 2h=2\, 1\2Q (0. -(20+2) ,,=ay2A-3=2q
+ _ (2Q+1)( 1)°%(2¢+1) taz . ((——zo) Z, +
b A=1-9
+ + C z, + S,. +
(Zoz ) 1 24-2-2¢)
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g (ZA— [( 1)29(2Q+1)'t -(2 “'+2) + cd ] . (f? + c)

[~

A-1—Qz

[+

| ' a \2A-3=2
+§ (2}'-2)[(-1)2Q(2q+1)!t—(2Q+2) + céoq] . ((= -z—-) A sz

* 85, 0.20) *
—4-2¢
A=2 -2 2¢+1 -(2¢+3) L (= g_)ZA 4-2¢
+Z (22+1) [(—1) eHl(2g+2) 1% +eby (( 2.

A-2-Q
2A=-5-2 b b c 2. 4+ S
+ (- -:—-) 5 Q(—z 5 + 0)21 + (= + ) 5

2A-3-2Q)
2z
[+] o

- ; a 2A=2¢g-1
(2)\ -1 (—1)2Q+1(_2Q)!at (2Q+1). (- -z_) Z2 +
S+ Z S

2—:(2“) (126 (201087 P ) (g 4 )Ty w8

o]

+i§i;(2x-1) (_1)2Q(2Q+1)!at-(2Q+2) (- %_)2A-2-2QZ2

2q+1

1 +

/ b A-1-
+ (A )2/\.3"2‘2(-—--1:’2 +c)zy + (5 c) Qz, + 527\-1-29) +
%o z

Z
(o] o

Azl os. 2 (2e+2) b A1
+Z (2: 1-) (-1)“9(2¢+1)1t + céoQ (== + c)

2e
(o]

+
2A-29
+

'sz +

) +

;(2}‘_ 1 (_1>2Q(2Q+1)!t'(2‘2+2) + 060Q . ((_ %_)ZA--Z"ZQZ"é +

o]

-a\2 =-3-2 b
+ (_Zi) 3 Q(.;-—Z- v e)zy + Sy gt
)



-Q o

A=1
> chl (SR R Ei g °66] (G, ,

b A-1- . a \2A=1, b
+ (z = + ¢) Qz1 + SZA-Z-ZQ) = (- ;;) (;rg.+ ®)z,.
o °

The first three SQ which have to be calculated in a direet way are:

z
o
So = 4 Z, P
b/z " + e

Using the iterative method we obtain for D1

b/z 2 9
D, = {2, 2,) ° 9z, = (249 %,) "4
1 9 2 1 1 2
-a/z )
° ——
0z
and
Q
Dy =357 ¢
o

The eigenvalues of A are given by:

. 2 A
A =—at "Q+°
1,2 23z 2
(o] 4zt
T - -1 .
T and T are given by:
b
z 2 t¢ H
o
1 2 2
s, a + 4b + 4z° c .
T 2z 2 ’
[¢] 4z°
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.andl

T--1 A
= = v
b a +4b+dz_©
o
2(—=x + ©)

. 2 4z 2
o ) °

respectively.

The total solution is given by

i
a2 + 4b + 4z 2c
a o .
t( - + , O
7 (t) e 2zo Az 2 2
1 -1.T ") T 1
- (T7) 71 T 2z, | ¥
Z2,(%) a“ ¢+ 4b + 4z ¢ i 2
2 a [e)
0, et(‘ 22 2
o 4z°
a 0, —1’—2’ + C Z,
($-1) d z d
*Z al 0z (« %4 ,z2) ° MY ) d¢/
= (o] (o] b4 -
° . a 2 a
1, - =
z
)
We now consider the equation 2Z"(t) + t1+t z'(t) + nzz(t) =0 (Iv,33)
- )
This equation results from egquation (1Iv,32) setting:
t—t_ + % 1 2
o y 8 =1, =€ =%
The solution of equation (IV,33) reads /7/, /8/:
| %2 : ¥
2(%) - z, cosh wt + == sinh xt = 2 :ﬁ-(f1vz1 + £,92,)
where
£
- . 2 j 7v-: 2 4 . )
b 4 --L'c T L T S v (2y- - wifg o~ -
v v, IW1 w2 t, (2v-5) 4v-n
Y =4 4 . .
el T N & J=1.2 (17,34)

Lo



10
f4 -0 _ f0 =0
£, = 0 £,y = 0
13 = %% Iy = %:
Type III

Zn(t) + (a + btz)z(t) = 0

a, b being constants.
This equation appears as the p- and y-equation when separating the

Helmholtz equation in parabolie-cylinder coordinates.

£ =2 =1
2! = 2', = 2,

Al

- (a + btz)Z1

while the Lie operator is given by:

¢} 0 2 [°)
D=3+ 2255, ° [}(a + bt ﬂ %4 2z
o] 1 2

Using the recurrence formulas the solution is again, given by the

formula (II,14), where fi(t) are specialized t@:

0]

£, (%)

fz(t)- -(a + btz),

[

in our case.

The derivatives of fi(t) are extremely simple, in this case:

b3

general



41(9)(t) - 0
f.‘;(’)(t) ~ -2bt
£,()(8) « -2v

fz(s)(t)

"
[«

so that (II,14) reduces to:

v v -1
2(+) Z o - i L [(“;zx-(a sz 2N DT, +

.+ (";’2)(-21::0) 1)"'3z1 + (V33 (=2p) D74 | o

1

- v -
.S tﬁ E-c - bzoz) Dv-221 + (v~ 2)(-2bzo).:DV ';' +
ym

+ tz

1 2

o Lm2)0=) (-Zb)pmz] .
1
Using the iterative method (Chapter II,2) we again put
D= D1 + D2

with
Dy = (2 ’2)(., 0

and

The eigenvalues of A are given by:

+ + 2
A1,2 - = sz = = V—(a+bzo )y

while TT and ’.l‘-1 are given by:

2
-a.-bz° ’ -a--bzo

T
T = ” Z3.
+ --a-bzo ’ -

Ll

z

1

+ t2

2



A
- V-a-bz°2 ’
-1 1
T = 2
(-a—bzoz)(-Z) v—a.-bzo2 a+bz, ’

The total solution is given by:

t V—a-bzo , O\

z1(£
- () 7T (
2,(%) 0 et V-a-bzoz
%
+Z:J Le=p)® [2— (2 2)(? 0” )<

L5



Type IV:

z*(%) - (a, + as

LY ¢3 and a being constants.
This equation appears among the equations resulting from a separation
of the Helmholtz equation in elliptic-cylinder-coordinates. The so-

lution functions are Mathieu functions /17/, /19/, /22/, /33/.

Eq. (IV,35) éan.%e wndtten in the form:
Zs a1 =« ¢!
2 - Z{ - 22.
2" « 2', « (&, + « a2 cosh t)Z
2 2 3 1
The Lie operator D is given by:

D=~ -‘:—1- z, -a-:— + (¢2 + a azcosh 1:)z1 (1Iv,36)

© 1 3

The solution of Eq.(IV,35) is given by Eq.(II,14). In our case,

f, and f, in Eq.(II,14) are given by the relations:

z

y = 0

f2 -a, ¢+ a3a2c01h %

Tho.qth derivative of f2 is given by:
2 '
: a a’cosh t + a,8 (¢ even)
f(Q) - 3 0 270Q
oz sinh t (¢ 0dd)
bpo is the KEronecker symbol

As shown in chapter II one can splitt off known functions from the
total solution (Eqs.(II,18), (II,19). This representation is, however
digsadvantageous insofar as it is much more difficult to code than the

recurrence formula repregentation (Eq.(II,14)).
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Using the iteration method, Ay, Ay, T and D, in Eq.(II,44) are given

by the following relations,-in our case;

. + 2 L
A1’2 = - Va2 + aia cosh t

ay + a3a2cosh t, + a azcosh t

T = %2 5
A1 kz
and
)
Dy = 32
(o)
Type V:

() ++ 20 (6) + (Ft - a, - %) Z(t) = 0

uz, a, and a3 being constantsg.

(1v,37)

This equation appears among the equations in parabolic coordinates.

Eq.(IV,37) is solved by Bessel functions /33/, /36/, /39/, /40/.
For t = 0y Eq. (IV,37) is singular and therefore cannot be solved

by Lie formalism. /1/. By means of the transformation ot o+,

to} 0, one can avoid these singularities. Taking into account this

trangformation, the Lie operator D reads:

Zo

1
f -
1 t°+t .
[+ 4
£, = W (4,1)? - ay - —2
(+,-t)

The ch derivative of f, and f2 is given by:

9

b7

9zt %2 Bz, " ( T -zt "‘z(to-zo)2 tap* (tazz ) 29) 0: '
o "o oo 2

"




() 1
2,08 = ()¢ Ef;;m

(o). _ 2 2 2 - 22 S B
z, - n(t, - t) 8o ¥ ¥ - 2(to-t)6q1 2% 692-(t e (=1)%¢!
[e] .

where 691 is the Kronecker symbol

A s> Ay, T and D, in Eq.(II1,44) are given by:
—
NP B | ) L S R
1,2 = z_+% 4 : o 2 2
o (zo-t)
2 2 %3 2 2 ag
W(2,-8)" - ap - 70 W (2gmt)" - @y -
(z -t) (z —t)
[s] o
T =
Ay , Ay
)
Dy = 32
: o
Type VI:
04
Z"(t) + coth t Z'(t) + (u2a2sinh2t - a, - —%)z(t) =0 (1v,38)
ginh t

Ky &8y a5 and a3 being constants.

This equation appears among the equations in prolate spheroidal
coordinates. The solution functions are Legendre functions /17/,

/33/, /36/, /39/. At t = o, Eq.(IV,38) is singular. We solve Eq.{IV,38)
in the domain|t|>o. In this case, we can use Lie series to solve

Eq.(IV,38). The Lie operator reads:

a
55— - (z,coth t + (uzazsinhzt -a, - Z
o 1 gsinh t 2

The solution of Eq.(IV,38) is again given by Eq.(II,14), where

f1 = coth t
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and
o
f, = u2a2sinh2t - a, - S -
2 2 . L2
ginh t

The ch derivatives of f1 and f2 are given by:

R N

where B, are the Bernoulll numbers.

K

(p)(t) ;E: zxzx 252_ 2x-2!1 t21-(p+2) .

Ap+1)! +

p=1 l
2 cosh2t - bpo(2 + az) for even p

2°=7 sinn 2t for odd ¢

where b is the Kronecker symbel
po
( o(t2< n2)

Using the iteration method, A,, A,, T and D, in Eq.(II,44) are given

by:
’ 1
L goth t ¢ coth’t v u2a20inm2t *3
1,2- 2 ) ® a sin - 05 - -
ginh™t
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a a
uzagsinhzt - ey - —3_ uzazsinhzt - a, - —

?
- sinh°t sinh°t
A v Ao
)
D, = »~—
2 azo
Type VII:

a

Zn(t) + cot t Z'(%) + (xzazsinzt +a, - ——25—) zZ(t) = 0 (IV,39)
gin t

Xy, &, a2 and a3 being constants.

This equation appears among the equations in prolate spheroidal
coordinates, spherical coordinates (a=0) and oblate spherical
coordinates. Eq.(IV,39) is solved by Legendre functions /17/, /33/,
/36/, /39/. Fvidently, for t = nn (n = 1,2, ...) Eq.(IV,39) is singu-
lar. We solve Eq.(IV,39) formally for the regular domain t § n=.

The Lie operator reads:

3 3 22 .2 %3 3
Dmgo— + 2, 3, + (-zpc0t £ - (x"a"sin’t + a, - —% )z1)az
o 1 sin"t 2
In our case, f, and f, in Eq.(II,14) are given by:
2K
2°7B
1 2K 2K-1
f1'°°°tt‘T+KS1_(ﬁ)_!'t
a 22
f, = -(u2a251n2t + a, - ——2——) = - (32— (1-cos 2t) + a, + « 4 ctg t =
2 2 .2 2 2 3 4t
gin t
2K
2 2 - 2B
n 8 1 2K 2K-2
=~ 5 (1-cos 2t + a, + cx3 (- ;—2' + K§_1 TZ—KF (2K-1)t )

(o <1< 112)

For the numerical evaluation of Eq.(II,14) we need the ch deriva-

tives of f1 and fz, which are given by:



2n
( ) n+1 2 BZn . = (?)_('1)_! +2K-( +1) A ? ,!
f1 ¢ :Z ("1) (2!1)! -(Iéx\-.(g;:;:")).!.,..-.g‘- +( '1) -—_t9+‘

n=0

(J£{<x)

e = 1, 2’ 3, IR

o 2
E 2?5801 (oxo1)(2E-3}t (2e9) ,
+ "'( 2"'!7! 2K-(p+2 )9 ! :

f(o) - a( (-1)94'1_1!%‘1_).!
2 > 7 K=

p+1
(-1 7 2°"Tain 2¢ p 0dd

2 2
.’.L -1 s -
(=172 . 2°7Tcem 2t - 55— 5po "21”

where Bzx are the Bermoulli numbers and b oo is the Kronecker -ynbbl

(o <t2< )

Considering Eq.(II,44) }\1 1 Ao T and D2 are given by:

2 a o
~cot 3
A = ==2 i (cot t) - uzazsinzt + o, =
1,2 2 2 2 2
ain t
5 a a
-% & sinzt + a, - —a ; -u2azsin2t + a, - —
.2 2 2
gin ¢ gin %
T =
A i Ao
and
)
D =32
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Type VIII:

2"(%) + tangh t 2'(%) + (uzazcosh2t - a, + ——5—) z(t) = 0 (1IV,40)
1y, 8, a, and a3 being constants.

This equation appears among the oblate spherical coordinates and

is solved by Legendre functions /17/, /33/, /36/, [39/.

The Lie operator is given by:

_ a
+ (-z, tanh t - (u232coah2t - a, + ———2——)2 2

D=
cosh’t 1311,

2 ,, 9
azo 2 az1

f1 and f, in the general solution of Eq.(II,14) are given by:
2K, 2K
277 (27 -1 2K-1
fy = -tenh t - ; o

2
2
(t°¢ )

sz are the Bernouilli numbers.

2 2 2 %3 u2a2
fy = -(x"a“cosh“t - a, + ————5—) = -( = (cosh 2t + 1)—a2+
cosh ¢

d
+ a3 3% (tanh t + C))

s (Q) _i 2%K(2%K_1y (2R-1)t tgx-(p+1)B
1 T = T (e (2={e+ ! ox

where B are the Bernoulli numbers

. 2K
2
(+%¢ 25

Q =1y 24 3, eeeeens



(e) 5221‘(22!_1.)3“ 2K-1)(2K-2)! . 2K-(p+2)
fy'= % (2K)T L(EK-(P*"" e :

K=1

_ n2u2 -1

2°"' sinh 2t for odd p

1232 -1
-5 2= cosh 2¢ for even p

where Bzx are the: Bernoulli numbers

2( Ti2
(t ‘4—) Q = 1, 2, 3, seses s

Using the iteration method one obtains for A,, A,, T and D, in Eq.(II,44)

2 [+ 4

A . _anh t ¢+ Wtanh't 2.2 2. . 3

1,2 2 4 2
cosh™ t

a o
-uzazcoshzt - a, + _ -uzazcoahzt - a, + —2\

2 ?
T - cosh t cosh t
A ’ Ay
and
)
Dy = 3%
[o]
Type IX:
(267~ (0"+?) (x*t%4ast%ra,)
Zn(t) + =— 2'(%t) z(t) = 0 (1v,41)

(+2-52) (42— + (#2_b2)(t2_02)

)

b, ¢y %, a, and a, being constants.

2 3
This equation appears among the equations in conical coordinates
and ellipsoidal coordinates and is solved by Land functions /17/s

/20/, /33/, /34/, /41/. Eq.(IV,41) is singular for t2 - b° and ° = c°.
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We solve Eq.(IV,41) for the regular domain: 2 ¥ b2, 42 4 c2. For

this regular domain we can uge Lie series in order to represent the
solution.

The Lie operator reads:

2 .2 2 2 2
5 3 _[2t -(b"+c”) ® t4+a3t +ay ] 3
1

(+2-02) (£2-c2) + (12-02) (12-c2)) %%

f, and £, in Eq.(II,14) are given by the relations:

- 12£2-(b2+c2)
(+2-09) (¢2-¢7)

2,4 2
wt +a3t +a,

2 - (t2-b2)(t2-c2)

or

B B
2_, >3

1
T-c T %+c

t-b T T+0

Ay» By (i =1, 2,3, 4, ) being constants.
The ¢-th derivatives of f, and f, are given by

A A

(e) Q 4 2 3 A
f = (-1)%! + + +
1 (t-b)Q+1 (t+b)Q+1 (t-c)Q+1 (t+c)Q+1

and

B B B B

2 3 4
+ + +
(+-0)¢1 T (440) T (4-0)HT T (t4e) oM

fz(q) - (-1)%!

' ‘ﬂ#C, \tllsb

S5k



If one solves Eq.(IV,41) by iteration method, one has to put the

following expressions for A1,'A2, T and D, in Eq.(II,44)

2t2-(b2+c2) + 2%2-(b2+c2) 2 u2t4+a3t2+a2
Ay o o= = ¥ -
1,2 (:2-02) (t2-07) (+2952) (£2-02) (+2-02) (12-02)
u2t4+a3t2+a2 u2t4+a3t2+a2
2 .2 2 2 ’ 2 .2 2 2
T - (t°~bp7)(t -c") (t°=b")(t7-c")
A1 , A2
and d
)
Dy =32
o
Type X:
2,2
1 (2t-(b+c)) (n“t 4o t-a,)
Zn(t) + — H(t) + 227 g(t) =0 (17,42)
2 (t-b)(t-c) (t=b)(t-c)

This equation results from the separation of the Helmholtz equation

in paraboloidal coordinates. The solutiongare Baer functiong /17/.

Eq. (IV,42) is singular at t=b, t=c. We solve the equation in the
region thb, tic. In this regular domain, we can represent the solution
of Eq.(IV,42) by Lie series.

The Lie operator for Eq.(IV,42) reads:

(b+c-2t) w242 st
3 3 (1 357% 3

o 1\ 2 (3-b)(t-c) 2 (t-b)(t-c) 3z,

The general solution of Eq.(IV,42) is given by Eq.(ITI,14) where
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? 1 (b+ec-2%
172 (t-b)(%t-c
-uztz-a5t+qz

(t-b)(t-c)

12 =

The ¢ derivatives of f1 and f2 can be obtained by an analogous
procedure as under type IX.
Ueing the iteration method to solve Eq.(IV,42) one has to put the

following expressions for A,, A,, T and D, in Eq.(II,44)

1
1 b+c-2% + 1 | b+c-2% 2 -u2t2—a 1:+cx2
RS A A | LAY Pt R o -
192 5 (4-b)(t-c) 4| (t-b)(t-c) (t-b)(t-c)
—u2t2-a ‘t+¢z2 -uztz-a t+a
T - Zt th ci Et biZt c5
A ’ Ao
9
Dy = 32
o
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Chapter V
Applications in Physics by A.SEHETT and J.WEIL

An Example From Rigid Body Mechanics:

The equation of motion of a plane mathematical pendulum of length 1
and magsg m in the case of a suspensory point vibrating in vertical
direction according to the law a cosw?t (a,w constant, g gravitatio-

nal acceleration) is given by /19/:

i+ 6(8)a + (& - 28 cosw t)a = £5(t)

if the elongation o is sufficiently small.

In this case:
£,(¢) = -8(t)
£, 8,2
£,(t) = - T+ 7@ coswt

1

the solution is given by:

tY oy
V=

Assuming A, # Ay £ }‘3’ we obtain the following eigenvalues of the

matrix B (chapter ITII):

J

2
-62@) + V64(t) _(.?. - -ia-uzcosot

N—

}\. —O’

o7



so that the '1‘i (the components of transformation matrix) are

J
‘given by:

ot

. 2
== 4 JER (5 - 307

11

2
(-] 2
t12 - - 6£t) - ‘V 461 —(% - %fo cosbt)

1

t,,-o

t21 =

<
1

-:'-020030 t)

t

]
i

22 ©

!
TN

%02 cosQ t)

ts
tyy = £

t5p = I3

t33-1

The solution is given by (III,20).

Using recurrence formulas, the sclution reads:

T(t) = i %:— Z;[fa("'z) - (”;2) 0%, (£)0" 7"y, +
v= <=

+ DR [- % + -1&-02coscat] Dv-2-qy1] +

2 3 4
t 2 t t
+y1+ty2+2—Dy1+3—!'D3y1+2‘—!D4y1.

An Example From Electricity:

Another problem described by the following circuital equation may be

solved within our formalism:

58



e R e, @ _E®)
at> L at  1c(t) L

i.e., 8 circuit containing a driving e.m.f. an inductance L in

series with acapacitance C varying with time, and a constant re-

i_ ’
1-¢ cosZr.)1 t

(if € is small enough) and writing Q = Y, 1/LC° = (_,20,

sistance R. Apsuming C(t) = 00(1 + Ccos 2011:) =
R - 2 2
z.c.,1t,“—,1—L- = 28, B = (450/01) and E(‘l:)/o1 L= f3(z), we
obtain the following inhomogeneous Mathieu equation:
™ + OY' + (a2 - 2qcos2z)Y = fB(Z)
where

£, = -20%

£,(2) = 2qcos2z-a

(z corresponds to t in the general treatment)

The formal solution is givén by:

v
Y(t) = Y
y=0

The eigenvalues of the matrix B (chapter III) are given by:

_ 0%+ .sz + 2qcos2z-a

while the elements of the transformation matrix are given by:

2 ot
t11 = - + + 2gcos2z - a

-
a

t12 = -K - V«z + 2gcos2z -

29



13

4]

2qcos2z -

2qcos82z -

t23 -

t31 = f3(2)

t

(]
la)
N
~
N
~

32

t33 =1

Using these results, the generai gsolution may be written in the way

given in chapter III Eq.(III,20).

Gravity Gradient 8tabilizetion of Artificial Satellites.

As Rumyantse showed in Athens at the International Astronautical Congress,
summer 1965, the problem of gravity gradient stabilization of artificicial
satellites leads to Mathieu functions. We did not hear this lecture tbut
the principal features of this problem may be contained in the simple
model of a pendulum with a vibrating suspensory point the theory of

which is given in many textbooks, e.g., /19/. The motion of the pendulum

is desoribed by the following equation:
V() + £,(8)e + £,(%)¥ - £5(%),
where fz(t) is given by:

£,(4) = (& - 1202 cosQ t)
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In this equationy¥, the elongation, is assumed to be restricted to
small values, WO is the frequency of the vibrating suspensory point,

& the gravitational acceleration and @ is the frequency of the
vibrating suspensory point; the functions fi(t) are gupposed to be
regular. Evidently, this equation is of the Mathieu type and, con=
gsequently, belongs to those types of differential equations which have
been treated by both lines of research of our ingtitute: the general
one which has set up a program for solving homogeneous and inhomo-
geneous second order differential equations and the special one whose

efforts are focused on treating the Mathieu equation.

Calculation of the Strongly Focusing Synchrotron:

The sronaly focusing synchrotron, a device propoged by Courant,
Livingston and Snyder /19/, igs a high energy accelerator which has
an even number A of mgnets along the circle representing the "ideal"
path of particles. The motion of the particles is described by the
following Mathieu equations for ¢ and 2z, the radial and axial devia-

tions from an ideal circle:

2L
<3
=

+ % (1-a-b cos 2 u)g =g

-
(o))

dzz
du

+ (a + bcos 2u) z=20

N
N

=

where g.q = 2u, ¢ =Qt, and Wis the sychrotron frequency as may be
seen, e€.g., in /19/. Evidently, these are also equations of the Mathieu

type whose treatment lies on the line of our investigations.

The Problem of the Heavy Asymmetrical Top.(Gyroscope).

Another promising physical application of Lie methods is the problem of
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the heavy asymmetrical top. Usually such bodies - e;g., space ve-
hicles - are treated as symmetrical ones showing only a aliéht de~-
viation ‘from symmetry which can satisfactorily taken into account
by a suitable perturbation calculation. Lie series formalism, how-
ever, allows the total asymmetrical problem to be solved. In parti-
oular, owing to the favorable decomposability of the Lie operator
D= D1 + D2, all deviations from symmetrical construction may be
put into D2. In this way, we will be able to check the present-day

perturbation calculations from the view-point of the general theory.
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Chapter VI

Representation and Computation of Mathieu Functions by Means of Lie Series

As a first example to the previous investigations the Mathieu’
equation

y"(x) - (2q.cos 2x - A).y(x) = O

was studied in order to demonstrate the usefulness of the Lie series
method for solving (1). According to their periodic nature, the Mathieu
functions - at least those of the 1St kind ~ are not very appropriate

to a representation by power series, as obtained in the described way.
This unfavorable example was chosen on purpose as we wanted to establish
the limits of this method as quickly as possible. The fact that in spite
of that satisfying results can be obtained attests to the usefulness of
Lie series formalism. In so doing, investigations on the remaining term,
better convergence (in this respect, Dr. Knapp's iteration method might
be very advantageous) and on computer times (e.g., compared to Fourier
series representations) were put off, as above all, we want to show that
useful, partly even numerical representations of the solution of (1) can
be obtained by means of the method worked out. (See also the concluding

discussion of this example).

(6.1) Theory
(P. Cap and Floriani D.)

(6.11) General results:

(5311)In the following, we shall summarize the method of solving
v*(u) - h(u).v(u) = g(u) (v1,1)

in a way which is somewhat different from that chosen in the previous

chapters since the formulas derived in this connected will be needed
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in what follows:

d
zZ, =u, Z, =V, 2, =& v(u) (v1,2)

From (VI,1) and (VI,2), we obtain the following system:

Zo =1
Z1 = Z2 (VI’B)
Z, = h(Zo).Z1 + g(Zo)
and the Lie operator
d 3 d
D = T 22'3;: +[z1.h(zo) + g(zo)]. 5;; (v1,4)
o

With help of the "commutation theorem" (proof, for example, in Kef. 1):

® P
t
f(Zo,Z1,Zz)-= exp(tD).f(zo,z1,z2) = ] ik Dpf(zo,z1,z2) (vi,s5)
and, particularly
© .p 0
Z1 = exp(tD).z1 = Eo -p—-'- . D z, (v1,6)

and after introducing the following new functions:

¥ - 0%k, - g(zk_2)(zo) - z1.hk(zo)

2k 1
(V1,7)
Y, ., - D2k+1Z1 _ g(zk-1)(zo) _ zz'hk(zo)
(k = 0,1,2,...)
g('1)(u) = jr g(a)da, g('z)(u) = jf g(‘1)(a)da = G(u)
) ’ (VI,78)

g(P)(ZO) - G(O+2)(zo)
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we obtain for the general solution:
2p
_ i t 2p (2p-2)
Z, = i W-[z,‘.\’h(zo) + g (zo) +Y2° +
2p+1 z
t ] 2 2p+1 (2p0-1)
+ 2p+1) [\/;('z—)- -yulz,) T e (z25) + ¥3ppg
o

2 £° [.(e)
= z1.Ch(t. h(zo)) + W . Sn(t. h(zo)) + i p!'[G P (zo) + ‘Ip] .

Because of

(v1,8)

z, = Zn(t=o),(n = 0,1,250.4) (v1,9)

the following relation holds within the radius of convergence:

Zo
+° (p) 2
o7 G (zo) = ¢({Z) = gla)da (vI ,10)
Zo
Furthermore, (VI,4) yields:
2
D'z, = z,, Dz, = g(zo) + z1.h(z°) (vIi,11)
as well as
1 d 1 d
Vazg) = gionlag),  2'e(s,) = b elx)
and (vi,12)

n(z,) = 8P)(z,), DPelz;) - &°)(z,),

respectively.

With

]

D2z, = 07(0%2,) = DP[e(z,) + 2,.0(z,)] -
(VI,13)
= g(n)(zo) + DnP(zo).za
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we have:

opsr = D25 [2,0(2)] - 2,0 (a)) _—
¥ores - p2k+1 [21.h(z°)] —zz.hk+1(zo).
Using the Leibniz rule we obtain:
22 n(z, )] - [(z,)-0(2,)] @) +
) {h(2k'2p)( )- G [2,, + 2,20 )]}
{(21: “20-1), ., G2 [E ¢ zz'hp(zo)]}
(v1,15)

2%, on(z,)] = [n(z,).6(2,)] (3 o

{(2k+1 20Y, - (2k+1 2 ¢ 2,07z )]}
1)
:{h(Zk )z ole (glp{::ll) [ 2p+1 7 zz'hp(zoﬂ}.

From

t = a0 - uo (VI,16)

and (VI,2+9), we have:

z, = v(uo) = v, (VI,17)

z, =v'(u ) = v !

2 o o}

n(z,) = h(z ) = h )z ) = (P ) = w0

&(z;) = glu)) = g, g(p)(zo) - g(p)(uo) - gle)
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In original notation, the general solution is, then, given by

u)p

v(w) = vgCh(u-u Yo + W.Sh(u-u N ffg(a)da +2: (“p —¥ (u) -

.s:.n(u-u )V—h +jfg(a)da_ o+ (v1i,18)

(u-u,)?
+i Tl:"—.wp(uo).

= v .cos(u-u )V-T‘

Its derivative is:

+v V_—' Sh{u-u )\/_—'+ v'.Ch(u-u )F f»g(a)da +.
(u-u )°
+§:— __P'—- Fopa(ug) =

v'(u)

(v1,19)
= -vV-h— sin(u-u )V -h '+ v! .cos(u-u )‘/-h ! fg(a)da +
00 (u-u )P
+ 5 . p+1(u°).

The following recurrence formulas hold for the ‘I'p:

=1 _ k
Y2k+2(uo) = [h.G]ézk) + ho.‘£’2k +t{ho(2k 29)(3p)-[‘1’2p + vo.hg]}+

k-1
- ; (2k-2p- 1)(2p+1) [ 20+1 + v! .h]}

(v1,20)

Yore3(2y) = [h.G]£2k+1) PR S (2k+1) h!. [?

k-1
(2k+1-2p) ,2k+1 p
+ ;{%10 ( 20 ). ‘1’29 + v oh fh+
k-1
(2k-2p),2k+1 o
* :{ho (2p+1).[‘?20+1 M v::’ho]
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(k=1,2,3,.0.) with (from (VI,7))

¥ (u) = e (n,) -

v,(a,) = -V, -
Yz(uo) =g, + Vv .h -
TB(uo) =gl + vl +

(6.112) There is also

sine and cosine terms

-G(uo) = jf;(a)daz =0
W,

u
-6 (u ) = j}(a)aa -0
U,

(vi,21)

g - vo.ho = 0

o

' w g! - y! = .h!
vo.h° &, vo.ho A ho

another way leading to the separation of the

given in (V1,18): One wants to approximate

in the neighbourhood of @ point u, the solution of the homogeneous

equation

v"(u) = h(u).v(u) (vi,22)

by a function A(u) with

A(uo) = v(uo)

(vi,23)
At(u)) = v'(u))

so that for the remaining term

R(u) = v(u) - Alu) (Vi,24)
with

R(u ) = 0, R'(u)) =0 (VI,25)

the following inequality holds:
|r|<x |4l (v1,26)
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in this neighborhood. It follows from
oh(u) = n(u) - h(u,) . (v1,27)
and (VI,22):

A"(u) = h(uo).A(u) + {-Rn +[h(u°).R + A.6h]+ ..} (v1,28)

In all cases that not are too unfavorable the curled bracket will be

negligible; in this case, A(u) becomes:

Alu) = vo.Ch(u-uo)Vi: + V%%.Sh(u-uo)VH: (vi,29)
)

as is given in (VI,18). Besides (VI,23), the relations
" -
A (uo) = v"(uo)

(VI’3°)
R"(uo) = 0

hold true.

(6.113) The application of the same principle to the inhomogeneous

equetion (VI,1) leads to

A"(u) = h(uo).A(u) + g(uo) (v1,31)

with the solution

Alu) -[vo 4—].Ch(u u )\/_‘ .Sh(u-u )F (vi,32)

By virtue of (VI,1), (VI,31) and (VI,32) the following relations
A(uo) = v(uo) R(uo) =0
At(u )= v'(u,) R'(u )= 0 (v1,33)

A"(uo)- v"(uo) R"(uo)- 0
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are valid. Por R(u) we have

- / (u-u_)®
R(u) = !fs(a)duz + Z:T?—-Bp(uo) (v1i,34)
with
BO = B1 = 0, 52 = 'g(uo)
(v1,35)

pylug) = +h'(a).v(a)
and for the pn(uo) (n=4,5,6,...) (VI,20) by substituting

¥ (.uo) — (uo)

and adding n=1]
. glu_ )
n o’/ . {(n=2u) B
+ — 2u)'h oy .h (uo).h (uo)

to the right-hand side, ({x] means an integer with x—h<b§sx), (VI,36)

or:

-7 .hl:'1, '4 (k=1,2,3,...), resp.

Pox™ Tox ~ & Bok-1= Tok-1

In the same sense one may in (VI,18) understand

, o
A*(u) = vo.Ch(u-uo)Vh_o' + ﬁ.srx(u-uo)ﬁ + ffg(a)da2 (v1,37)
Yo
as an approximation. The differential equation for A* is given by
U
4*"(a) = h(u).4%(u) + g(u) - h(a ). fg(a)daz (v1,38)
Uo

According to (VI,33) and (VI,34):

(u-u_)°
R*(u) =i —5%--'1",(110)/ (v1,29)

[+]

Yp(uo) from (VI,20) and (VI,21), and:

A* (uo) - v(uo) R* (uo) = 0

A*'(uo) = v'(uo) R*'(uo) =0 (v1,40)

TO



A-l-n(uo) - v"(uo) R*“(uo) = 0

Splitting up v = A* + R* seems to be more convenient than v = A + R,

for which reason its derivation was given, in detail, in (6.111).

(6.114) Another representation of the solution of (VI,1):

The relations (VI,21) do not change if g(u) vanishes identically:

?p(hom) - Tp(lnh) for p = 0,192’35

(Vi,41)

from (VI,20) the ?p for p = 4,5,6,... are well determined also for

g(u) = 0; therefore, with

(inh) (hom)
b, (uy) = ¥, (7)) — oy (om)gy )

the following equations hold

6p(u°) =0 for p = 0,1,2,3;;
Spraig) =Becly ) 43 ©n, 7t tug) -

.i ®).n, =) [o (u)) + &, (2]

(vi,42)

(v1,43)

for p = 2,3,4,+.. The first two terms in (VI,18) and (VI,19) do not

depend on g(u) and are therefore part of the solution of the
homogeneous equation.

Because of this hold the relationms

(u-u, )P
v(w) = v (a) + G(u) + :% ——2 s (u))

and 0
(u-u_)

v'(a) = 'ﬁon(u) + 6'(u) + -_—T;T—-’bp+1(uo)

0,(3
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with the 6p(u°) from (VI,43) and G(u) from (VI,7a).

(6.12) Specialization to Mathieu's Equation:

(6.121) We treat this equation in its most usual forms:

y"(x) = (2q.cos2x - A).y(x) (v1,460)

and

Y"(x) = (A - 2q.Ch 2x).¥(x) (Vi,46m)

for the ordinary and the modified Mathieu equations, respectively.
One obtains the solutions by specializing (VI,18) to (VI,21) as

follows:

(6.122) Ordinary Mathieu equation:

u=x
v(u) = y(x3q,}) ( )
V1,470
h(u) = 2q.cos 2x - A
¥ (u,) = e (xg5a,1).
For the derivatives of h{u) we have:
sin 2x
n (20-1) 2q.22P" 1, (=1)P.sin 2x_ = 2q.(-4)°. 2
o] o 2
(v1,480)
h (20) _ 2q.22p.(-1)p.cos 2x = 2q.(-4)°.cos 2x
o ) o
and, from this:
sin 2x

?B(uo) = voeh) = 95(x 505)) = -4q.y(x ).sin 2x = 2q-(-4)-y(xo)~_——§-—2

(VI,490)
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(6.123) Modified Mathieu equation:

u=x
v(u) = Y(x3q,))
n(u) = A - 2q.Ch 2x (V1,47m)
¥ (u,) = 8,(x,50,2)-
Here we have for the derivatives hgp):
Sh 2x
h (20-1) | (-2q).22p-1.Sh 2x_ = (-2q).4°. 2
o] o 2
(V1,48m)
(20) _ 2p p
h = (-2q).2°".Ch 2x = (-2q).4".Cch 2x
and
Sh 2xo
W3(uo) = vo.hé = ¢3(xo;q,k) = -4q.Y(xo).Sh 2x = (-2q).4.Y(xo).~—E———

(VI,49m)

(6.124) Additionally we have to mehtion that the solution of (VI,46m)
also is to be obtained from (VI,460) by a substitution x-»ix, that is

u = ix in (VI,4Tm). Lfter introducing a parameter & with

+1 for the ordinary Mathieu equation

-1 for the modified Mathieu equation
we get a simultaneous representation of (VI,470,m) to (VI,490,m):

h
o

6.(2q.cos 2xdva -A) (v1,47)

sin 2x6 4]

QVE' (vI,48)

h°(2°) = (296).(-46)°.cos 2x6v9

(2q8).(-45)°,

ho(29-1)

[F)




sin 2xdv5

YS = (2qb).(-46).v°. zvﬁp | (v1,49)

(6.125) As is well known, the solution of
v'(u) = h(u).v(u),

where h(u) is analytic at a point u = Uy is also an analytic
function at the same point. If h(u) can be expanded into a power
series within lu - uJ-:p the same statement holds for the solution
v(u). In the case of the Mathieu equations, h(u) is an analytic
function with p = o0 in the whole complex plane. The same holds for
the solutions, as well as for the approximation A(u). Consequently,
the remaining term R(u) = v(u) - A(u) is also an analytic function

with the radius of convergence p = 0o,

(6.13) The Mathieu functions:

(6.131) For any point of the (A,q)-plane the general solution of the
homogeneous Mathieu equation is given by (VI,18) to (VI,21) with
(v1,47) to (VI,49). With

v1(0) - 1 v;(o) =0

(v1,50)
72(0) = 0 Yé(O) = 1

one obtains two in&ependent solutions. It is very conveniént to use
these conditions in our solution (VI,18) to (VI,21). Any solution
of (VI,46) is given by

v(u) = A.v1(u) + B.vz(u) (vi,51)

with
L=v(0), B =vi(0), | (¥v1,52)
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v(o) and v'(o) are arbitrary constants. For the fundamental system

(Vvi,50), we have (see, eg.: Ref. 19: 2.12):
v1(u).vé(u) - v{(u).vz(u) = 1
v1(-u) = v1(u) (vi,53)

72(-u) =-v2(u).

(6.132) Mathieu functions of nonintegral order:

In the following, we denote the different kinds of Mathieu functions
by the symbols used by Whittaker, Watson, McLachlan, Meixner, Schaefke,
etc: ce, se, fe, ge and Ce, Se, Fe, Ge. For any given values of A\, g
we can compute the characteristic exponent p = u(i,q) (Ref. 19: 2.13)
and obtain two independent solutions ceu(x;x,q) and seu(x;,x,q) resp.

Ceu(x;x,q) and Seu(x;,k,q) with:

cen(-x) = ceu(x) Ceu(-x) = Ceu(x)
(V1,54)
seu(-x) = -seu(x) Seu(-x) = —Seu(x)
From (VI,52) and (VI,53) follows then:
ce (x32,a) = ce (052,a).5,(x5%,q)
se (x32,q) = sel(052,q).¥,(x5%,q)
(v1,55)

Ce (x325a) = Ce (031,q).Y,(x32,q)
Sen(x;k,q) = Se&(O;XQQ)'Yz(x;Xﬂl)

for the same A and q.

>



(6.133) Mathieu functions of integral order: They are the solutions

if (A,q) lies on the limiting curves between stable and unstable

regions.
cem(x;q): A= am(q) (m=0,1,2,0..)
(vi,s56)
sem(x;q): A = bm(Q) (m"1’293:--')
They are Floquet solutions with the period 2x (or =):
cem(x+z) = (-1)m.cem(x)
sem(x+t) = (-1)m.sem(x)
(vi,s7)
cem(x+§) = (—1)m.cem(g-x)
sem+1(x+§) = (-1)m.sem+1(§-x)

It is necessary to introduce new non-periodic functions to get an

independent second solution:

A= am(q)z fem(x;q) as second solution to cem(x;q)

(v1,58)
A = bm(q): gem(x;q) as second solution to sem(x;q)

resp. Fem(x;q) to Ce and Gem(x;q) to Sem(x;q). Ce, ce, Ge, ge are

even, Se, se, Fe, fe are odd functions. Then it follows from (v1,52):

ce (x5h=a ,q) = ce (0;a).y,(x;A=a ,q)

ge,(x32=b ,q) = ge (03a).y,(x35x=b ,q)

(v1,59)
se (xsh=b ,q) = se;(03a).y,(x;A=b ,q)
fe (x3h=a ,q) = fe!(0;a).y,(x;)=a_,q)
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The same holds for Ce_, Se_, Fe_, Ge_.
n n n n

Some other necessary results are:

(1) 2 = a (a)s

(a) n = 2k:

(b) n = 2k + 1:

(2) A = b (a):

(a) n = 2k + 13

ceék(o;q) =0
cet (33) = O

fe,, (05q) = 0

= Ce}, (03q)
= Cej, (2133q)

- Fe2k(0;q)

y.(msa) = y3(x5q) = +1

yj(n) =0

oy (030) =
°e2k+1(§‘Q) =
fe2k+1(0;Q) =
y,(x) = y3(x)

yi(x) =0

S€on+1(032)

L
seén+1(5;q)

ge) .1(03q)

L}

y4(n) = y5(=)

[
o

yz(n) =

T

0 = Ceék+1(0;q)

o

n
= Cepprr(izia)

0 = Fe,y,4(03a)

"
L}
-

@]

= Se2n+1(O;Q)

o

- 1 X,
Se2n+1(i2’Q)

(@]

= Geén+1(0;Q)

(v1i,60 i)

(v1,60 ii)

(v1,60 iii)




(b)n = 2k + 21 . se2n+2(0;q) =0 = Se2n+2(0;q)
’°2n+2(§;q) =0 Se2n+2(i§;q)
ge) ,»(05a) = 0 = Gel .(05q) (YI.60 iv)
y4(x) = yo(x) = +1
yo(x) = 0

According to (VI,S?), it is sufficient to know ce , se , Cen and

Se, within (o,g) .

The functions ce and se ~are normalized as follows (Ref. 19: 2.71, (4)):

2r ar
/;ei(x;q)dx - ‘/;ei(x;q)dx = n, (vi, 61)
- )

which yields:

2 n
t:en(O,Q)] = W
Ven. Ji n .
[ﬂ n(o.q)] W———o yg(x)dx

(vi, 62)

(6.2) Discussion of the Computation Process; Flow Diagrams

(Floriani Dietmar)

(6.21) General remarks:

(6.211) A1l together, the following nine programs were written in the
course of the investigations concerning the applicability of Lie

gseries formalism to the Mathieu differential equation:
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4 programs for computation O0f Mathieu functions by means of
Lie series (AA, AB, AC, AD)

1 program for computation by means of Fourier series (CA)

1 program for a combination of Fourier and power series with
respect to q (DA) (see, e. g.t Ref. 223 2.13,(2)-(15))

3 programs to c&loulate the eigenvalue A of the Mathieu
differential equation. (BA, BB, BC)

In the following, let us discuss AC, AD and BC in detail. Remarks

on the remaining programs are to be found in (6.4).

The purpose of the work was to master cdmpletely the computation
of the Mathieu functions. The solution given by equ. (VI,18) to (VI,21)
is, above all, suitable for computing the fundamental system (VI;50).
If one masters the computation of the eigenvalue A the functions ce,
se, fe, ge and Ce, Se, Fe, Ge can be computed from (VI,59) except
for the normalizing factor (VI,62). The main purpose of this work was
to examine the usefulness of Lie series to calculate Mathieu functions
of the first kind and of integral order. From (VI,57) follows, that it
is sufficient to know this functions within (o,g).'This result was made
use of with coding the equations (VI,18) to (VI,21). Because of the
Floquet theorem

v(u+n) = o.v(n) (v1,63)

the restriction to (O,%) is also valid for any Floguet solution

satisfying (VI,53):

v1(n—u) = o.v1(u)
vz(n-u) = -o.vz(u)
or, with uv—» g-u :
n
v,(zm) = u.v1(§-u)

v2(g+u) = ~a.v2(g-u) (v1,64)
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(6.212) While the programs AA to AC only served to compute the ordinary
Mathieu functions and expansion was only performed in the neighborhood
of x = 0, in AD the equations (VI,20+21) were programmed in complete
generality using (VI1,47,48,49). The recurrence formulas for the ?p's

then read as follows:
o &= -
Yoo (3,) = (208).(-48)". E;: (-48) Tor,e * BoTop
" k-1 -p
¥ope3(u,) = (206).(-48)". 2:_ (-48) vy g o * (V1,65)

+ (2qb).(-4b).(2k+1).A.ak + ho.?2k+1

with
2k 2k
Tor,p (20).3.0.p + (2p+1).A.pé}
(V1,66)
2k+1 2k+1
Yoks1,p = {}-46).( 20 ).A.ap + (2p+1).B.Bq}
and
sin 2x V!?
A = —21 B = cos levg
2\f6 °
(V1,67)
P p
@, = (Y2p+v°.ho) B, = (sz+1+vé.ho)
wB = v .h! = vo.(2q6).(-46).A (v1,68)

In contrast to AA, AB, AC, we expanded also in the neighborhood of
the points x = + 450. While dealing with the individual programs
we found it desirable to be able to influence the course of the
program during the computation process, in a still more pronounced

way. This intention was taken into account in AD to a rather great

extent.



(6.213) Short description of AC and BC:

With AC, only expansion round x=0 is carried out. In this case,

the equations (V1,20) simplify to:
Kk &=l -p 2k P
¥2k+2 = (Zq)'(-4) . Z ("4) .(20).(w29+v0.h0) +

+ (2q-x).Y2k

(v1i,658)
=P, 2k+1
+ (2a-0).¥,,
Furthermore we have:
YB = 0. (V1,68a)

(V1,65a) is essentially faster to calculate than (VI,65). For v, =0
_ . _ . . s

all W2k+2 = 0, for ve o= 0 all W2k+3 = 0. Corresponding inquiries were

built in in AC, a fact by which the computer time becomes less than

half of the time needed for (VI,65) in AD.

(6.214) By the appropriate choice of the conditional switch a more or
less large number of provisional results can be put out, e.g.: the

~u )P 1 -u )P 1
Wp(uo), each (u uo) .Wp/p. or only the last two Wp(uo), (u uo) .Wp/p.,
A(u), R(u), &'(u), R'(u), the most little terms in the sums for R(u); etc.
Usually theyare useful items of information to estimate the accuracy of

the final results v(u), v'(u).

(6.215) BC: The machine jumps to BC with "GO TO: (EIGWE)". Unfortunately,

our mastering of the eigenvalue calculation is not sufficient.
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By lack of time we could not deal with this problem, any more. At
first, we make a preliminary and approximate calculation of A

by means of power series with respect to q. (See, e.g., Ref.19:2.25).
In Ref.23 besides radii of convergence the following equation is

given for the error estimates:

. 2
S5 s ety (1o 18172 (g2 0 W O NN
n pn =

kam+1

For this equation a program was written. The extension of BC aimed
to the following purpose: If the error limit put-in is exceeded,
the computation of the eigenvalue is to be continued by a continued
fraction. We consider that as transgressing our problem, by far,

and, therefore, we did not deal witnh this problem, any longer.

(6.22) Short Description of the Computer we used:

The ZUSE Z 23-V digital computer of the computer center of
Innsbruck University was available to our investigations. The
machine possesses 250 quick access storage registers and 8200
registers on a magnetic drum. Several difficulties in coding were

due to the rather limited range of the quick access storage.

As regards the representation of numbers, we distinguish, as
it is usual, between floating point numbers (= GKZ, symbol: x,
= REAL in ALGOL) and fixed point numbers (= FKZ, symbol: x',
= INTEGER in ALGOL). The FKZ representation is only possible up
to 1012, GKZ representation between 10727 and 1077, Output is

performed by means of a teletyper:
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n ZVB (n line feeds)
n ZWI (n intervals)
n SPA (n column jumps)

PRINT (output of data)

or by means of a quick puncher for tapes:

n ZVB2, n ZWIZ2,

n SPA2, PRIRNT2.

In what follows, the accumulator is denoted by "A". For arithmetic
operations in GKZ-representation an auxiliary storage with address 6
(in the following: "S") is needed. n means the address of the storage

(n<255: quick access storage, n>>255; drum), (n) its contents.

Furthermore, a conditional switch with the address 14 is available.

It is adjustable between O' and 31°'.

(6.23) Program MNVM-AD for Computing the Ordinary and Modified Mathieu

Functions by Means of Lie series:

(6.231) This program has been stored from 3000 and essentially consists

of eight steps:

/3000\

Clearing of storage registers i (ANGAB)

Input of data Summarizing output (printing)
Partial determination of the of the data

program run via 14

!

/(BEéIN)\ /(V;OR’_B_)-\

Treatment of data Preparations for the compu-
Computation of the constants tation of the ¥ 's

| l
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(UMNOT) (FORT)

Conditional jump to an Inquiry if y(x)
expansion around a new point; # |for another x?
if needed, computation of

the ¥ yes LEEEJ*
p

/T¥0Ru)\
[T ey

Preparations for the

computation of y{(x) and
y'(I) [(sToP)\

(6.232) The data which are to be put in were classed in three groups:

a) Data which remain equal in a rather great number of calculations:
Xy ox, Xpe

b) Data varying comparatively often: q, A.

¢) Data which always have to be put in again: v(u=0), v'(u=0), the

number of terms N, the parameter & (ordinary or modified Mgthieu

functions), printing program.

Accordingly, the data (a) and (b) are taken over into two different
registers for the calculation and are always available for new

calculations again.

(6.23%3) Storage plan:

(a) x, - (252)

6x = (253) Input may be carried out in-
xp = (254) (EExA) dependent of each other as FKZ
(degrees) or CKZ (radians)
(v) » = (250)
a = (251)
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(¢)  (14) | (237) (238) vo=(248) v1=(249) (255)
o' (0] 0 are read in (]
1t +1,- +1,- +1,- 0
2! +1,= =1,= 0 +1,- 0
3 +1,~- 0 0 +1,- +1,-

6 = (239) = +1,-: ordinary Mathieu functions

= =1,~t modified Mathieu functions

(236) = 0: quick printing:

only x_, x,, ¥(x)s ¥'(x,)

(236) = +1: partial printing: some intermediate results

additionally

(236) = =1: complete printing: all interesting intermediate

results are printed.

(255)

(255)

form of the Mathieu equations

d2

2

dt

O: printing, as explained above

(t) + e.(1+k.cos t).w(t) = 0O

+1: for the purpose of comparison with & less customary

2.y(xo) will be put out, additionally.

For a simplification of the calculation we have additionally put in:

(233) = 180,-,

(234) = +1,-,

(235) =

1092,

The binomial coefficients are computed by addition in each last line

of the Pascal triangle; the Tp's are stored from 4000 onwards and

transferred into the quick access storage by block transfer.

- (211-1 )

2n
G o1

G =G o+ @) = (150+)

[

(2n—1)

0 = (50+p)

wp = (4000+p)

b4

P

fi

(150+p)

(50+p)



Additionally, we store for the purpose of normalizations to be
undertaken later on:

x, = (4099+2r),

y(xr) = (4100+2r).

(6.234) Normalization: avoid the laborious calculation of the
normalization factor from (VI,62), up to now we have always calculated
the corresponding solution of the fundamental system (VI,50) for

(qsr) (e.g., like Morse-Feschbach, Ref. 21) and afterwards normalized

by putting in a given value ;(xN;q,k).




Flow-Disgram to MNVM - AD

/ 3000 \

TO: 4000-4399
TO: 2995-2999
TO: 17-247, 255

1,- T0s 234
1180,- TO: 233
!

5 ZVB
PRINT: " Q UND LAMBDA EINLESEN:

STOP (to check 14), PRINT: (14)

(14)=0: JA, (14)=1: NEIN"

1 ZVB
[PRINT: "Q:", PRINT: (251)
PRINT: "LAMBDA:", PRINT: (250)

(14)=0 ]VZ13).1 ]

1 ZVB
PRINT:
PRINT s

"Q:", READ: q
9, 9 TO: 251
PRINT: "LAMBDA:", READ: A

1 ZVB
PRINT: "ANFANGSBED: (14)=0: WERDEKR
EINGELESEN, (14)=1: Y(0)=1,

Y'Eog-o, Gixg; 514;=2= Y(0)=0,
Y'(0)=1, H(X); (14)=3: WIE =2,
i ZUSAETZL. 2H(X)"

TOP (To check 14), PRINT: (14)

PRINT: A, A TOs 250

+{x=02]-1]

je—————— T+ = GKZ? ] IJ

—{¢0 T0: (EIGWE)

(14)=0 | (14)=1 [ (14)=2 F(14%=3 T
I

—

:

READ: y(x=0), TO: 248
READ: y '(x=0), TO: 249
0 TO 237, 238

238,
0 TO: 249

+1,= TO: 237,

}

+1,- TO: 237, +1,~- T0: 237,

248 249 249, 255
-1,- TO: 238 0 T0: 238,248
0 TO: 248

1 2VB

PRINT: "(14)=0: MOD. MATH.F.EN; (14)=1: GEW. MATH.F.EN"
STOP (To check 14), PRINT: {14) = & (see equ. (18))

(14)=0 (14)=1

[1,-70: 239} [1,= T0: 239
+

[[+] 6x = (253) = ckz?| - }—

1
{-[x, = (252) = 07| +

‘.
[}] x, = GKZ?If-}

1,- T0,232
G0 TO: (BEGIN)

A
+1,- TOs 232
.0 T0: (BEGIN)
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/ (BEGIN) \

(252)= x, TOs 242,245

(253)= & TO: 243,246
(254)= xp TO: 244,247

1,-.107%10; 235 245 (245)
Y 1 246)] TOsA, GO TO:(GRABO),(A)TO: (246§
247 (247
245 i 242 l_(232)=+1"l (232)"'1:’
246)| TOs 4, GO TOs (BOGRA), (A) TOs: ({243
247 244
(245) = x, TO: 241
(242) = x, T0: 240
GO TO: (ANGAB)
/ (ARGAB) \
-ZVB2, PRINT: (PRUGR) 1 ZVB2
1 ZVB2 PRINT2: "Y(0):", PRINT2: (248)
N [1] " -
(239) = -1,- ] (239) = +1,- | fn;ggga Y'(0)s", PRINT2: (249)
PRINT2: "Qs", PRINT2: (251)
PRINT2: "GEWOEENLICHE PRITS "LAMBDA:", PRINT 2: (250)
L_MATHIEUFUNKTIONEN" |
PRINT2: "X-ANFANG:", PRINT2: {(245)
PRINT2: "DELTA X:", PRINT2: (246)
PRINT2: "MODIFIZIERTE PRINT2: "X-END:", PRINT2: (247).
MATHIEUFUNKT " 1 ZVB2
(232)=+1,- (232)=-1,-
I
.-
PRINT2: "X-ANFANG:" PRINT2: "X~ANFANG:"
10 ZWI2, PRINT2: (242)
PRINT2: (242) PRINT2: "DELTA X:"
PRINT2: "DELTA X" PRINT2: (243)
10 W12, PRINT2: "X-END:"
PRINT2: (243) PRINT2: (244)
PRINT2: "X-END:" 2 ZVB2
10 ZW12, GO TO:s (VORB)
PRINT2: (244)
2 ZvB2

’
GO TO: (VORB)

/ (PROGR) \

Contents the sym-
bols of the program
used for comp., e.gd

"MNVM-ADJ"
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{(VORB)\

+2,- TO: 130

éZng = 2.(251).(239) T0: 132
-46) = -4.(239) T0:133

0 TO: 231

GO TO: (UMNOT)

(uMoT)

GO TO: (ABFR)
(5)-(130) T0: A|

- (a)=02] +

GO TO:(ABFR),
A TOs 130

y(o) TO: 142, y'(o) TO: 143

L-1 ()07 + |—

2 ZVB, PRINT: "ENTWICKLUNG"
PRINT: "(MOEGLICHST GENAU) FUER"
G0 TO: EXNULL), PRINT: (A)

GO TO: GZAHLg,(A) TO: 230

30 TO: (AUSDR

O TO: 140, 141

G6C TO: EPHI),

G0 TO: (XNULL), (4) TO: 140

GO TO: (GRABO), (A) TO: 141

GO T0: (ERG), 2 2ZVB2

PRINT2: "Y(Xo):", PRINT2: (38)
PRINT2: "Y'(Xo):", PRINT2: (39)
(38) To: 142, (39) TO: 143

/ (ERGAN) \

(231) 1417 = r'+1' TOs 231

GO TO: (XNULL), GO TO: (GRABO),
-(4) TO: A

(241)+(A) = x_-x_ TO:s 141

CO TO: (ERG), G0°T0: (DRUCK)
(241) = x TO: 4099+2.(231)
(38) = y(x,) TO: 4100+2.(231)
GO TO: (FORT)

{CO TO: (ERGAK)]

2 ZVB
PRINT :
GO TO:
PRINT:
GO TO:
GO TO:
GO TO:
GO TOs
GO TO:

"ENTWICKLUNG", PRINT: "UN"
XNULL)

A), (&) TO:s 140

GRABO), éA; T0: 141
GZAHL), (A) TO: 230
AUSDR), GO TO: (PHI)
AUSDR), 2 ZVB2

ERGAN
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/(FORT)\

[ (232)=-1,- | (232)=+1,- |
. ; I |
(231).(246)+(245)= (240)'+(243)'-x'_1+61'=x'
= T.bx+x, = x T0: 241 T0: 240 T F
GO TO: (BOGRA) GO TO: (GRABO)
(1) = x: TOs 240 (a) = x_ TOs 241

T T~ [ w0 5]

(24 Caar, (241).(35) =

5x

= (xE + F - xr).(BS) TO: A
+| (a)=<o0?| - l
{Go To: .(NoRM) | STOP '1
GO TO: (UMNOT)

/(NORH)\
2 ZVB

PRINT: "NORMIERUNG: (14)=0: NEIN, (14)=1: JA, X-GRAD (14)=2: Ja,
X-BOG.MASS ; 1.) X 2.) Y(x)
STOP (To check 14), PRINT: (14)

l—-——-—-'——‘- (14) = 07 +

1 ZVB

READ: Xy, PRINT: Xy Xy 10 41, 43 fco To: (sTOP)]
READ: y(xn), PRINT: y, y TO: 42
2 ZVB2

(14)=2 | (14)=1 F l
L I : ; T-{(a1) = oxze | + |

GO TO: (GRABO)

: (8) T0: 43 132),31‘ TO: 43
= : .
[51’(231)=rmax;=149?| - | 1
4099 TOs 36
{co To: (sTOP) | 4102+2.(231) T0: 46

' P’
[ -](36)=(46)? | + |—————={c0 TO: (STOP)]
[ ]

(36) + 2 TO: 36 6
?+|__—_-l

- 113s6)) =+ (a3)<0”
¥(xy)

ﬂx—N)-TO: 45, 4100 TO: 35

B




|

. [PRINT2: ((35)+1), (35)+2 TOs_35
1((35))-(45) = y(x.)w(xy) = ¥(x.) TOr &
PRIRT2: (A), 1 SPA2

- [(35)<(4é)v| +LT

|60 To: (sTop)|

/(STOR)\.

1 ZVB
PRINT: "ENDE"
STOP
GO TO: (STOP)

Functions of the subprograms used for MNVM-AD:

(EIGWE):
(AUSDR):
(GRABO) :

(BOGRA ) :
(ABFR):

(XNULL):

(KONST):
(GZAHL):

(GERAD)s
(KLAMI):

(KLAMA):
(PHISU)
(BINOM):

(XUFAK):

Berechnung des EIGenWErtes (Calculation of the eigenvalue)
Wahl des AUSDRuckprogrammes (Choice of print progranm)

Verwandlung von GRAdmaB in BOgenmaB8 (Change of degrees to
radians)

Verwandlung von BOgenmal in GRAdmaB8 (Change of radians to =
degrees)

ABFRage, ob Umentwicklung (Inquiry whether expansion arcund
a new point is needed)

Berechnung des Punktes X, um den zu entwickeln ist
(Calculation of the poiﬁ? X, around which expansion has to
be carried out)

Berechnung von KQONSTanten (zur Phi-Berechnung) (Calculation
of constants (for calculating phi))

Eingabe der ZAHL der verwendeten Glieder (Input of the
number of terms used)

Abfrage, ob (A)' = 2k' ( Inquiry if (A)' = 2k')

Berechnung der Inneren KIANmern ( Calculation of the
internal brackets)

Berechnung der AeuBeren KIAMmern (Ca10ulation of the exterma}l
brackets)

Fuer ein PHI AufSUmmierung der Rekursionsformel (Summatiem
of the recurrence formulas for one phi)

Berechnung der BINOMialkoeffizienten (Calculation of {;c
binomial coefficients)

Berechnung einer X-Potenz Und einer FAKultaet (Calculation
of an x-power and of the corresponding factorials)
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(MINMA): Bestimmung des }INimalen und deslgaglmalen Gliedes.
(Deternination of the minimum and maximum term)

(AXFAK): Berechnung Aller X-Potenzen und aller FAKultaeten
(Caloulation of all x-powers and all factorlals)

(SUMNE) : Berechnung der SUMME aller Glieder (x-xo)Q.Y /e!
:(Calculation of the sum of all these terms)

(UMSP): UMSPeichern (Storing of the intermediate sums)

(NlEH): Berechnung der NAEHerungsloesung (= ohne Korrekturglieder)
(Calculation of the approximate solution (without
correction terms))

(KORR): Berechnung der ekturglieder ( Calculation of
correction terms '

(ERG):  Berechnung der ERGebnisse: y(x) und y'(x) (Calculation of
results)

(DRUCK) s DRUCKen der Ergebnisse entsprechend (AUSDR) (Printing of
results according to (AUSIR))
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Rlow-diagrams of the Subprogrorms to quI;AD:

/(AUSDR) \
1 ZVB

PRINT: "AUSDRUCKEN: (14)=0:
RASCH, (14)=1: TEILWEISE,
(14)=4: VOLLSTAENDIG"

STOP (To check 14), PRINT: (14)

[(cmno)\

= =07 -]

(14)=0 | (14)=1 | (14)=4 = "y
! l ] 180.(A) TO:4,8
| - RETURN
0 TO:A +1,-TO:&] [-7,-TO:4 (
. A) TO: S
| RETURN RETURN RETURN RETURN
(XNULL) (BOGRA )
1(130)=-1,- [ (130)=0 [(130)=+1,- | | - j(a)=02] +
l | TR
-45' T0: & [0 TO: &) [+45" TO: £ ~~.(4) TO: & | RETURN |
RETURN RETURN | [RETURN RETURN
{(ABFR)\
[¢]
[ rse1]
~1y- TO: 4,S — r
RETURN | | - ix >+45%]+|
l |
0 TO: 4,5 +1,- TO: 4,5
RETURI RETURN
/(Korscr)\l
[(141)=x_ To: 4]
[(239)=-1. [ (239)=+1,-!
Ch 2x_ = B TO: 136 [cos 2x_ = B TO: 136
Sh 2x, _ sin 2X
5 = & TO: 135 —F— = A T0: 135
A-2q.Ch2x =h_ TO: 134 |2q.cos 2x_-A= h_ TO: 134

(T (i34)on(x,)>07 [ + ]

*
-h TO: 144 y+h  TO: 144
-1,- TO: 131 +1,= TO: 131
1 ZVB2 1 ZVB2
PRINT2:"TRIGONO- PRINT2: "HYPER-
NOTRICOgY BOLISCH"
IRETURN | RETURN
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/(czann)\ (GERAD)

T zvB _ (a)' TO: 34

PRINT: "WIEVIELE GLIEDER: | (a)112' 10:°0,8
N' = 10.A'+B' Ats"

STOP (To check 14) - [(a)yr=2kr?| +

PRINT: (14)°

10.(14)' TO: 34
PRI§Ti)"Bv=",5smop -1,- TO: A +1,- TO: A
PRINT: "N'a" (RETURN RETURN

(34)'+(14)* T0: 34
PRINT: (34)'

RETURN
/(KLAMI)\
2.(37)=2¢ T0: 41
(154)(37)=hg TO: 40
(35)=n=2k+2 (35 )=n=2k+3
b i
142).(40)=v_.h% TO: S 142).(40)=v_.n% T0: S
gl s
+ =a : +(5S )=a :
phne i | (st
A§+(S)5 s 2@+ mo, 110331 Ta04r T0: 4
) = 8, 0: 39 A)+(s) = By T0: 39
RETURN RETURN
Z(KLAMKS\
GO TO: (KLAMI)
(35)' TO: &
GO TO: (QEFAD)
(8)=+1,- | (8)=-1,-
((41)+50) = (5¢) T0: 5 ((a1)+150) = (*57) T0: 8
(136).(38) = B.aQ T0: A (133).(135).(38) = (-45).A.aQ TO:
(4).(8) TO: 422 (4).(8) TO: 422k 1
((41)451) = (o5,) T0: S ((41)+151) = (317) T0: 8
(135).(39) = A.pQ TO: A (136).(39) = B.ﬁQ TO: A
(4).(8)+(42) = Yok,e TO: 42 (A).(s)+(42) = Yok, o TO: 42
'RETURN RETURN
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(paEISU)

(35) To: A
GO TO: (GERAD)

1121:2--k 701 36— (8)==1,~ | (a)=+1,- 12%l=3==k 70: 36
0 TO: 37
+1,- T0: 43
0 T0: 44

(37)+1 =

————

GO TO: (KLAMA) _
(5)31(43) = (-48) °.,..,Q
(s)+(44) To: 44
(43).(133) = (-46)¥"" T0: 43
e+1 TO: 37

TO: S

+ [G1)<(36)=k2] - |

(133)(36) = (-46)¥ To: s

. K-
(132).(s).(44) = (2q6).(-46)k.§::i TO: 44
(35) 10: 4, GO TO: (GERAD)

[#]

(4) = -1,-

!

T

(1) = +1,-

(134)'((35)+48) =h 'w2k+1 TO: S
(s)+(44) T0: 44 °

GO TO: (KLAMI)

235)-2 = 2k+1 T0: S
132).(133).(s).A.(38) =

= (2q6).(-45).(2k+1).A.ak T0: S

(s)+(44) = ¥orey 10t 44

(134).(35)+148) = h_.¥, TO: s|
(8)+(44) = ¥y, TO: 44

RETURN

(44) T0: 4000+(35) =
4000+(2k+3)
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(BINOM)

(35)1-2' TC: 36

-](36)! = 412+

[Ll(36)'>41'?l+ e

[-1'_TOs 37|

237)'+1' T0: 37
(37)+50) AS GKZ

97

2;6§oéo?7A T0: ((37)+50)
(8)=-1,- [ (a)=+1,- ;‘F?Bv)'<:<36>'°‘T
. 1t TO: 37

1 o (36) TO: &

(§37)+49) + (537)”49) + (A)=-1,-_| (a)=+1, -
(37)+50) = +((37)+150)= |l—3_ I
2k+1 2 (37)+149) TO: S é(37§+493 T0: S

=(5es1) =(5041)T08 ES)+((37)+150) §)+((37)+50)
@} {37)+150) e {Gr+so)lffl  Tos ((37)+50) 20: ((57)+150)

(37)+1 T0:37 | | (37)+17 20:37|fl| (37)'+1' P0s 37 | [(37)+1' 10: 37

A (37)<(36)2]- -i(37)<(36)?ljn LGn<Ged - | [-]6n <G +

| 3 r 1 — ¥

Tt TO: 150 1" T0: 50 +1,- TO: 50 +1,- T0: 150

11 T0: 11 T0: +1,- TO: +1,- TO:

((36)+150) ((36)+50) ((36)+50) ((36)+150)

RETURN RETURN RETURN RETURN

(XUFAK) (MINMA)

((35)+4000) = ¥ _TO: 38 (x-x )\35)

_-‘_l‘y _ 0?[ - IQ ((35)+50) = -7—5——35 - (35)TO’ 39
IO [-lGor - o -]
RETURN [1 TO

(36) AS GKZ TO: 37 r'7|K39)F>(46) | 44]
(141) = (x x,) TO: S (39) TO 46
38) TO 38 (35)" To: 48
(36)'+1- TO: T
[(36)<<35) | [+ [ =[G o ; |
RETURN é}gg T0: 47
A 35)' TO: 49
(36)' AS GKZ TO: 37 RETURN
(141) _ (x-x%5)®
(38) 7377 = o . ¥, TO: 39
RETURN



/(nAEH)§

ﬁanuxﬂ'

1(141).(144)=(x-x ) .{*h_ TOs 42,43 705% T0s 46
(131)m=1,-(=TRIG.)[(131)=+1,-(=HYP.) 0 TOt 47
1 1 -1 3‘(_): 35 .
cos(42) TOs 42 Cch(42) TO: 42 , : :
sin&z} 70: 43 snf43; 70: 43 :((;35%;1(,(%3;1(35
' 1 -t §39§ T0: §§35 +50)
(142) = v, T0: 4 GSBTOTOEMIN;Z +150)
4).(42) TO: 44 (2 ;
30)' = N TO: A
1 = v! 70
éA4?)4} :?144; :o: s -[(35) <(a) 2] +
gsg+$44g=yheh TO: 44 u
131;.5142)-(144)-(45) TO: 45
143).(42) T0: 8 [(Uusp)x
s)+(45) = Y Raen 103 45 (40)+(38) TO: 40
RETURN (41)+(39) TO: 41
RETURN
(suMME)
.0 TO: 38,39

- 1(36)'<<(35) 2] +
g

[(35) -1+ T0: 37]
.

[(35)1+1' T0: 37]
4

KA

¥

37g-+1' T0: 37
38 +§(37)+50) T0: 38
39)+((37)+150) TO: 39

37)1-11 DO: 37
38 +(§37)+5o) T0: 38 -
39)+((37)+150) TO: 39

10N ' < (36) 1 +

+] (36)'< (37) 9] -

RETURN l

[(Ere)}

| RETURN |

GO TO: (KORR)
GO TO: (NAEH)
(40)+(44) = y(x) TO: 38

(255)=+1,- (255)=0

[2.(38)=2y(x)-T0: 37]

(41)+(45) = y'(x) TO: 39
RETURN
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et

(KORR)

0 TO: 40, 41
(141) = (x-x_) TO: A
4ﬁT(A) 44T1 + 1
GO TO: (AXFAK)
(48)' TO: 35

lRETURNl

[(48)1<(a9): | (48)'=(49)" | (#e)'>(49)'}——-]
! 1

1' T0: 36

GO TO: (SUMME)

GO T0: (UMSP)
$35;'+1' T0: 35
49)' TO: 36

GO TO: Esuunm)

GO TO: (UMSP)

:1(49X3(230)'=N?]f
T

(36)'+1' TO: 36
(230)' TO: 35

GO TO: ésuunE)
GO TO: (UMSP)

RETURR]

[(DRUCKH

1' T0: 35 (230)' TO: 36
(230) ' T0: 36 GO TO: (SUMME)
GO TO: gsumun) GO TO: (UMSP)
GO TO: (UMSP) 35g'-1' TO: 35
RETURN 49)' TO: 36
GO TO: ésuqu)
GO TO: (UMSP)
-{1=9) e |+ E
;
(36) -1 TO: 36
1' TOs 35
GO TO: éSUMME)
GO TOo: (UMSP
RETURN

L%I(zss)ny.»{ T

1 ZVB2, PRINT2:
PRINT2: (240), (241)
PRINT2: "GLIEDERZAHL:"
PRINT2: (230)

"X-ARBEIT:"

(236)=-1,~

| (236)=+1,-

'
{1 zvB2, 0 TO: 35|
3

(35)7+1" T0: 35
Il (141)=07?} -

PRINF2: (240), (241)
PRINT2: (38)

+] (255)02] - |
' [PRINT2:

(D

PRINT2: (39)

RETURN

[PRINT2:"0"] [PRINT2: ((35)+50)]

1 ZVB2, PRINT2: ((230)+3999)
PRINT2: g 230)+4000)

PRINT2: ((230)+150)

PRINT2: ((230)+50)

1 ZVB2, PRINT2: (46), (47)

i
{+] 355)'<:(230)'=§zl:;,k——————*~PRINT2: (44), (40), (38)

+ [(255) = o7 - ]

PRINT2:
PRINT2:
1 ZVB2
RETURN

e 230853 (399
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(6.5) Numerical Results

(Ploriani Dietmar)

(6.31) In order to demonstrate the usefulness of the Lie series method,
we reproduce four examples, the ordinary functions se,, ce,, ce3 and

the modified function Ce,. As told above, we calculated the fundamental

4
system (VI,50) (like Ref. 21). If a value normalized according to

(vi,62) was available we multiplied our results by the normalization

factor y(xy)/y(xg).

Explanations referring to the columnss

1) Ce,: Column 1: x in radians

4
Column 2: y(x); below the normalized value (aee

renark); below, the value of comparison from Ref. 24.
Column 3: y'(x) (not normalized)
Column 4: Order of magnitude of the smallest term used in the
sum (VI,39).((-n) means 10™%, of course)
Column 5: The same for the derivative of (VI,39).
The values y(x) were obtained by normalizing y(x=0,1) to 1,1330
(taken from Ref. 24). Consequently, the values y(x) of the second
line of column 2 may be wrong from the fifth digit while the
unnormalized values y(x) (in the first line) have the original

accuracy.

2) cey: In this example the values of y(x) and y'(x) are not normalized.

Column 1: x in degrees

Column 2: y(x) calculated for 30, below it for 17, below it for
10 terms, in (39);below these values, the value from
Morse-Feshbach (Ref.21) is given for the sake of

comparison
Column 3: The same for y'(x) (without value for comparison)

Column 4, 5: as in 1)
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e

0,3

(@]
\un

0,6

0,7

0,9

1,0

, 100000000/+01

,100519363/+01
»11330C000/+01
,11330 /+01

+101676300/+01
, 114604036/+01
411460 /+01

,102231891/+01
,115230268/+01
, 11523 /+01

,100052404/+01
,112773668/+01
, 11277 /+01
1921920767/+00
,103913931/+01
, 10391 /+01

,7541075%6/+00
,849989300/+00
,84996 /+00

,475140199/+00
,535552378/+00
453553 /+00

974910743/ -01
,109886675/+00
,10988 /+00

-,302955275/+00
~5341474829/+00
~434146 /+00

-,575802785/+00
-,649013%3811/+00
~,64899 /+00

0
,972570370/ -09

,113613849/+00
-,381249934/-01

-,447630695/+00

-,221632845/+01
-,334757849/+01
-,408189917/+01
-,366919362/+01

-,147121582/+01

101

(~37)

(-29)

(-23)

(-19)

-

u
~~

(-13)

(-10)

(-40)

(-27)

(-19)

(-36)

(-27)

(~21)

(-17)

ot
~—

(-11)

(-09)

(-40)

- (-23)

(-19)



. oez(x;a)

0.
104

20

300

409

50

609

70%

8090

900

, 100000000/+01

,918721565/+00
,918721565/+00
,918721565/+00
»9187

,681985475/+00
,681985475/+00
1681985379/+00
,6820

,317080590/+00
,317080587/+00
,317068498/+00
32171

-,115417896/+00
-,115418488/+00
-,115783378/+00
-41154

-5515119951/+00
-,515134036/+00
-,518409426/+00
~y5151

~,758697177/+00
-,758725800/+00
-,764743045/+00
-, 7587

~,746682435/+00
-, 746715920/+00
-4 753429435/+00
-, 7467

-,461980548/+00
-,462006955/+00
-,466545243/+00
-,4620

,372529029/-08

-,347094610/-04
,37563%8250/-02
, 0000

o

-,925242223%/+00
-,525242223/+00

"~,925242225/+00

-,176294217/+0%
-,176294217/+01
-,176294546/+01

-,236160093/+01
-,236160105/+01
-,236187557/+01

-,249712071/+01
-,249713584/+01
-,250329561/+01

-,196064023/+01
-,196074153/+01
-,198043166/+01

-,729353347/+00
-,729413240/+00
-,740099783/+00

, 886775360/ +00
,8€6782194/+00
,890114724/+00

,228150895/+01
,228157557/+01
,230532689/+01

,283447515/+01
,283401283/+01

,291895629/+07
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3) se, and ce,:

Column

- Column

Column

Column

2

1: x in degrees

2: y(x); below the same quantity normalized according to (VvI,62)

(see remark)
3: y'(x)

4, 5: as in 1)

In order to normalize se, and ce, we took eight-digit-values ; at

x-90° from Ref. 42. Before this we estimate the accuracy of the

normalized values to seven digits.

se,(x15)

of

10°?

201

30°

400

500

60¢

70°%

8o¢

90°®

0

,188695561/+00
329604726/ -01

,466132532/+0(
,814218865/-01

+935811049/+00
,163463169/-00

,171063116/+01
,298805182/+00

,286744961/+01
,500872908/+00

,436030518/+01
,761638051/+00

,594110387/+01
,103776470/+01

» 718240068/ +01
,125458871/+01

,765668132/+01
»133743390/+01

, 100000000/+01

,124535882/+01
,203286757/+01
»346129214/+01
1549981492/+01
,772154247/+01
914730588/ +01
,854072594/+01
,524849689/+01

-,178813934/-06

103

(-37)

(-25)

(-19)

(-14)
(-40)
(-25)
(-18)
(-13)

(-09)

(-34)
(-23).
(-17)
(-13)
(-39)
(-23)
(-16)
(-11)

(-01)



cez(x;S)

0° , 100000000/ +01 0
109 ,103753674/+01 - ,414834533/+00 (-35) (-33)
, 762894862/+00 :
20¢ ,113347289/+01 ,632857185/+00 (-24) (-22)
,833436165/+00
300 ,123284138/+01 ,410750603/+00 (-18) (-16)
,906501253/+00
40 »123796996/+01 ~,4710684203/+00 (<13) (-12)
,910272267/+00
50¢ ,103168567/+01 -,196454071/+00 (-40) (-38)
, 758592604/ +00
600 ,549803003/+00 -,348158071/+01 (-25) (-23)
,404267041/+00
700 -,124341227/+00 -,398760686/+01 (-18) (-16)
-,914273966/-01 '
800  -,736175131/+00 ,271330788/+01 (-13) ¢-11)
-,541305384/+00 S
90¢  -,985303635/+00 - 1372529029/ -07 (-09) (-07)
-,724488154/+00

(6.32) Remarks on the results:

We had everywhere the expreasions.(x-xo)p.Yp/p! printed out. Tpus,
it turned out that they rapidly decreased with increasing ¢, in our
examples. It seems, therefore, to be obvious that in those domains
of the (q,\)-plane in which this decrease is rapid enough the error
caused by breaking-off the sum (v1,39) is of about the same order of
magnitude as the smallest (or last) term used if no error of higher
order of magnitude is superimposed, e.g., by repeated analytical

continuation. Since we expanded in the neighborhoad of 0o° and 450,
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the values of columns 4 and 5 should give useful hints to an estimate

between 0° and 45° and in the neighborhood of 900.

Unf&rtunately, no tables with more than 5 digits were available
so that we could merely estimate the accuracy of the remaining digits.
(Ref. 42 contents only single values y(x3;q,\) to certain pairs of
(a,1)).

Consequently, the results at the boundary of the interval were
specially significant for judging the efficiency of the method.

From (VI,60) follows:

ceé(n/2) =0
se;(n/z) =0
ce5(n/2) =0
whereas our values are:
cej(n/2) = -,372.../-07 (-07)
se;(n/z) = -,178.../-06 (-07)
ce3(n/2) = ,372.../-08 (-09) N = 30
= -,347.../-04 (-04) N =17
= ,375.../-02 (-01) N = 10

(N means the number of terms used to calculate the sum (VI,39)).

The agreement is rather satisfactory, above all, if we take into account
the fact that X=X is already rather great, namely 0,8. In the case

of repeated analytical continuation the result should still be better
whereas the computer times remain comparable. Besides, the values of

the 4. and 5. column yield surprisingly good estimates in the case

considered.
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(6.4) Discussion of the codes; Possibilities of Improvement and

Extension

(6.41) The program MNVM-AD:

The programs for calculating Mathieu functions by means of Lie series
were intended to become acquainted with the possibilities and
limitations of this method (accurscy, domains of rapid convergence,
necessary number of terms) rather than to yield computer times as
short as possible. Accordingly, AD was arranged so that the run of
the calculation could be influenced to a wide extent (e.g., the input
of a new number of terms with "GO TO: (GZAHL)") while some clumsy
actions, as, e.g., the complete calculation of the Tp(x-O) instead

of using those already calculated, were not eliminated, partly by lack
of time, partly since only the computer time was increased, by that.
In an improved program, analytical continuation would have to be
possible in the neighborhood of arbitrary points. For this purpose,

a reasonable, i.e., theoretically well-founded and numerically useful
estimate of errors would be needed if one does not want to give the

s8tep size completely arbitrarily.

Another promising way of further improvement is a method which has
been elaborated here, at Innsbruck, by B. Knapp (Ref. 10 to Ref. 13),

i.e. using rearrangement of the series and iteration processes.

(6.42) The other programs:

The programs AA, AB are preliminary stages of AC and AD; in the same

way, BA, BB are preliminary stages of BC.

The comparison program CA for the representation by means of Fourier

series was, again by lack of time, only sketched and is not yet ready.
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DA, however, ias completely worked out. As it was to be expected,
the results were satisfactory only for rather small q. Consequently,

this program could not be referred to for purposes of comparison.

Conclusion:

In the exact Ealculation of Mathieu functions also the use of Lie

series is accompanied by certain difficulties. However, investigations
carried out at Innsbruck in the last few years have shown that these
difficulties can be avoided to a greater extend, e.g., by rearrangement,
iteration processes, etc. For less accurate calculations the method

is thoroughly appropriate in the form described above.

The fact that the Lie series method yields satisfactory results, also
in the comparatively unfavorable case of Mathieu functions suggests
that it might be appropriate also for calculating the other special

functions of mathematical physics (see chapter VII).
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Chapter VII

The Numerical Calculation of Weber Paraboiic Cylinder Functions,

by A.SEHETE and J.WEIL.

From a separation of the Helmholtz equation

AFwivi2) 1 wPurvs2) = 0 (V11,1)

in parabolic-cylinder coordinates, we obtain the following three

equations:

|
(@]

L2 - (ay + ag’Im -

]
(o]

N 2
—5 + (a2 - asV )N (VI;'Z)

5+ (u2 + a3)Z =0

the first two of which are solved by Weber parabolic-cylinder func-
tions.

As it is well known these equations have already been investigated
extensively: /33, and references given there/, /34/, /35/, /36/, /37/s
/38/y [39/-

We are going to present a short review of all three formulas represen-
ting the solution of the general homogeneous linear differential
equation derived so far - all of them based on Lie series formalism.

These equations are of the general type:

YU(6) - £,(8)Y1(t) - £,(£)¥(t) = 0 (VII,3)

109



which is converted into a first-order system in the usual way and

solved

. o
I(t) = g -vTD"’y

The first formuls representing the solution - on which the numerical

calculations are based - reads:

Y(t) - : _3:! ﬁ (U;«?) (11(9)(y°)D9—1'-Qy1 +
[V Q-O

-2
N fz(o)(yo)pv O,) + ¥, + b3, (VII,4)

Evidently, this formula is a recurrence formula for the powers of
the D-operator; following a way proposed by Prof.Cap, we gave an
alternative formula obtained by splitting off given functions (tri-

.gonometric wnd hyperbolic) from the total solution, e.g.:
2

2
z{t) = z, . %1[ cosh (tf,) -1 - Sf';_)'] + 2 [c“h (+V%,) ’1’;1]‘

(t£°) . L[
1[sinh (tf1) ol T vl R sinh (tf,) -

+

o
n
=

(+2,)> 2
tf1 - 51! ] + 1;.'2 sinh (tﬁz) - ‘t:-v_f.l2 _Lﬁg%)z +

th ,
- Y sQ(zo, 240 25y T4, fz) + 2, + ¥z,

The third formula (see chapter III, Eg.(III,6)) consists of a main

+

term and & perturbation integral which can be evaluated by iterations:

Yz(t) i '_hf_ WAz ) . 5
<Y1(t) T VT (y) * Z Lo [DZD (y)]fh‘

0]
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In our case, BEg.{(VII,4) for which the coue was written reduces to

a simpler form as f, = 0 and f, = (a + th); consequently, Eq.(VII,4)

becomes:
' é::; v 2 2
_Y(t) = %‘l [(-a"byo)DV- }'1 + (u-2)(-2by°)
. o= !
D”'3y1 + 12:2%12:21 (_Qb)pv-4y1] £y, o+ by, (VII,5)

According to /33/, we write the two equations leading to Weber!

functions in the following form:
T(t) + (% 2 - a)Y(t) = 0 (VII,6)
1,2
Y (t) - (Z t° + a)Y(t) =0 (vi1,7)

i.e., the conventional ways of solutions requi e a disjunction of casges
which are simultaneously contained in the Lie formalism; this is one
of the advantages of the latter method. To start with, we will treat

Eq.(VII,6):
a) The solution of Eq.(VII,6) is given by:

Y = AU + BV (v1iz,s)
where U, V are two independent solutions and A, B constants.

a) In the well-known series representation /33/ we have:

U(a,t) = D_,_ %(t) = cos ™ (% + % a.)Y1 - gin =n (% + %-a)Y2
and
1 . 1 1 1 1
V(a,t) = —{51n (- +5a)Y, +cosn (= +5 a)Y}
1 2
r‘(_é___ a) . 4 1 4 2 2
with

111



¢ - PG -7 8) ;
1T 2_2_31 1 1
and
o, fE-Te
T =g "L -1 Y2
L, "2

Yq» ¥p are given by the following series:

: 1, 2 1 4
¥y - et {1 +(a-§)-2—!-+(a--2-) (a-%)‘ﬂi»-...}

3 5
£ t
y, = e {t+(a-%)-??+(a-}2-) (a-%)-s—!+...}
which are convergent for all values of t.

B) On the other hand, U and V are represented by integrals in
the following way /33/:
- 2 - -0oi

~3 e 1 P L+ -

U(.a,z) c Ee— 2
2 T(z+e

nL
01

(larg z1 < % n)

where the ¢ontour separates the zeros oi‘r(s) from those of

it 40 +%— 28).

S8imilarly we have for V:

12 0]
=z 1
1(-' 4 1 TPz - a - 29)
V(a,z) = 2e .23 2 . (‘22)2scos snds
n 27 i P 1
—a0i (-2- - a)

(larg z\(% )
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b) Eguation (VII,7) is solved by:

>

4 -

Y(a, t t) - {cosh me) (6,7, 7 V2 o57,)
2 Vn

where
1 1
G1 = lf(-4-+—2'ia)‘
and
1 ..
G5 = lr(%+-2-1&)'
while
2 4 6 8
2 1, & ] 2 t
Ye =1+ &%T +(a" -3) YT (a3 - % a) R (a4 - 112" + 120'37 +
10
+ (a5 - 258.3 + E%l a) %—T + cocene
and
3 5 7 5 9
Yo =t + aiT + (a2 - %) %T + (a3 - %2 a) ET + (a4 - 17a° + Q%D%T +
5 3 531 t11
+ (a” ~ 35a° + 1 a) TiT f ocrecer .

: : . t
in which non-zero coefficients a, of o7 are connected by

1
a =a.a -7n1 (n-1) a

n+2 -2

Numerical calculation:

Evidently, we have for the solution and its derivative:
Y(a,t) = 4U(a,t) + BV(a,t) = Y1(a,t)

Y'(a,t) = AU'(a,t) + BV'(a,t) = Yz(a,t)
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For t = 0, the independent solutions U and V and their derivatives

reduce to /33/:

U(a,0) = 1 J-V—;. 1
TG+ 3e)
\rﬂ
U'(a o) - - la l
e, 2 4 1,
B b 3 i (V11,9)
V(a,0) = 2 sin n (4 - 55)
[ - 3=)
1.2
V*(a,0) = 2 : sin 7 (%" %a)
G-

From Eq.(VII,9) U(a,0),U?(a,0), V(a,0) and V'(a,0) can be calculated
for different values of the parameter a.

Without restriction of generality, we may choose:
¥(a,0) = U(a,0) = y(a,0) = y,(a,0) (v11,10)
Y'(a,0) = U'(a,0) = 'y'1(a,o) = y,(a,0) (vii,11)

i.e., we have put A = 1 and B = O; the small letters are initial
values.

With the help of (VII,10) and (VII,11) we may write the solution:

Y(a,t) = S —— Yy + ¥y + ¥t = U(a,t)

Y'(a,t) -i — My + ¥, = U'(a,t)

Furthermore we choose:

7
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Y(a, o) = ¥a,0) = ¥(a,0) = ,(a,0)
Y'(a,0) = V'(a,0) = y'(a,0) "Nz(atd)_
i.e. we have 4 = 0 and B = 1.

Again the solution is expressed by:

t\l
Y(4,t) = iz STy 3y 4yt = V(ayt) (viI,12) -
u:

td v
Y'(a,t) =S ST DY+,
=

the philosophy of this choice being the construction of solutions

-V (a,t) (ViI.15)

which, are tabulated.
We now expand Y(a,t) and Y'(a,t) in the neighborhood of t = 0 and
v
choogse a step size of At = 041+ As t increases more terms ﬁ%%L-y(a,t = 0)
have to be calculated if the accuraecy is prescribed. Since the com-

puters have a limited numerical range, only a limited number of terms
& ¥
v!

pand the functions Y(a,t) and Y'(a,t) at t = O and, using a step size

y(ast = 0) can be calculated ("overflow"). Consequently, we ex-

of At = 0,1, we calculate until Y(a,%) and Y'(a,ﬁ) are reached.

Y(a,t1) and Y’(a,t1) are, then expanded at %, where t, was chosen

1
to be 2, in this calculation. Continuing this method, we can compute
Y(a,t) and Yt*(a,t) for arbitrary a and.t, with the accuracy wanted.

In the following appendix, the values calcuiated on the basis of the
Eqs.(VII,5), (VII,®2) and (VII,13) are compared to the five digit
values extracted from /33/. 23 terms of the Lie series were used for ~
this calculation (it is worth mentioning that also 16 terms which were
used in a prQliminary test yielded very accurate results). The calcu-

lation time for one value of the functions U(a,t), V(a,t), U'(a,t),

Vv'(a,t) was about 3 sec.
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Tables: In the following tables, the values of U, U', V, V! are given
for several values of the parameter a; the column to the left and
right are Lie series results, the central one presenting results

taken from /33/.

M KA S, Ay
0.0 230522 (+o01) ;30522 (+01) 68418 (+01)
0.1 »36547 (+01) 136547 (+01) »51583 (+01)
0.2 »40753 (+01) ,40753 (+01) ,32200 (+01)
0.3 442935 (+o01) 142935 (+01) y11257 (+01)
0.4 142988 (+o01) »42988 (+01) -310179 (+o01)
0.5 140918 (+01) 140918 (+01) -,31029 (+o01)
0.6 136836 (+o01) ;36836 (+01) -,50253 (+o01)
0.7 130953 (+01) »30953 (+01) -,66912 (+01)
0.8 »23566 (+o1) 23566 (+01) -,80214 (+o1)
0.9 y15042 (+01) y15042 (+01) -,89558 (;01)
1.0 ,57999 (+00) »5799  (+00) -,9455T (+o01)
1.1 -,37182 (+o00) -,3719 (+o00) -,95055 (+01)
1.2 =,13063 (+01) -,13064 (+o1) -,91126 (+o01)
1.3 -,21806 (+o01) -,21806 (+01) -,83064 (+01)
1.4 -,29554 {(+01) -429554 (+o1) -,71355 (+o1)
1.5  =,35976 (+o1) -,35976 (+o1) -,56644 (+01)
. 1.6 =-,40808 (+01) -,40808 (+01) -439695 (+01)
1.7 -,43868 (+o01) -,43868 (+01) -,21345 (+01)
1.8 =-,45059 (+01) -,45059 (+o1) ~-524521 (+00)
1.9  -,44369 (+o1) -144368 (+01) 16143 (+01)
2.0 -,41866 (+o1) -,41866 (+01) 133664 (+01)
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t U(-5-0/%) U(-5.0/%) U'(-5.0/%)
Lie Series Table /33/ Lie Series
2.1 -,37694 (+01) -437694 (+01) 149429 / +o1
2.2 -,32057 (+o1) -432057 (+01) ,62884 [/ +o1
2.3  -,25208 (+01) -,25208 (+01) 73616 / +o1
2.4  -,17434 (+01) -,17434 (+o1) ,»81364 / +01
2.5 -,90387 (+00) -,9039 (+00) 86017 / +o1
2.6 -,33225 (-o01) -,332  (-o01) ,87612 / +o1
2.7 »83870 (+00) ,8387  (+00) 86312/ +o1
2.8 ,16842 (+01) »16842 (+o01) 82389 / +o1
2.9 »24789 (+01) »24789 (+01) y76202 / +o1
3.0 y32021 (+01) y32021 (+01) 68170 / +o1
3.1 38377 (+01) 38377 (+01) 58744 / +o1
3.2 143739 (+o1) 143739 (+01) ,48386 / +o1
3.3 ,48038 (+01) »48038 (+01) 37545 / +o1
3.4 y51246 (+01) ,51246 (+01) 26637 / +01
3.5 153376 (+01) »53376 (+o1) 116034 / +o1
3.6 »54473 (+01) 154473 (+o1) 160485 / +oo
3.7 54614 (+o0t) »54614 (+01) -,30683 / +oo
3.8 »53895 (+01) ,53895 (+01) -,11132 / +01
3.9 »52427 (+01) ,52427 (+01) -,18021 / +o1
4.0 »50332 (+01) »50332 (+01) -,23677 / +o1
4.1 47733 (+01) »47733 (+01) -128094 / +o1
4.2 144753 (+01) 144753 (+01) .
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U(-4.5/t) U(-4,5/t) U'(-4,5/t)

" Lie Series Table /33/ Lie Series

0.0 »30000 (+o1) »30000 (+o1) »00000 (00)
0.1 229328 (+01) »29328 (+o01) -513396 (+o01)
0.2 »27341 (+01) 227341 (+01) -,26178 (+01)
0.3 ,24132 (+01) ,24132 (+01) -337763 (+o1)
0.4 | »19846 (+01) »19846 (+01) -,47627 (+01)
0.5 214678 (+o01) »14678 (+01) -455337 (+o01)
0.6 ,88615 (+00) 88615 (+00) -,60565 (+01)
0.7 426550 (+00) ,26550 (+00) -,63106 (+01)
0.8 -4,36676 (+00) -,36676 (+00) -,62886 (+01)
0.9 -,98321 (+o00) -,98321 (+00) -,59963 (+01)
1.0 =,15576 (+01) -,15576 (+o01) -,54516 (+01)
1.1 -,20661 (+01) -,20661 (+01) -,46837 (+01)
1.2  -,24882 (+o1) -,24882 (+01) -437312 (+01)
1.3 -,2807T (+o1) -,28077 (+01) -,26396 (+01)
1.4 -,30131 (+01) -»30131 (+01) -,1458T (+o01)
1.5 =-,30982 (+o1) -130982 (+o1) -,24-38 (+00)
1.6 -,30617 (+01) -,30617 (+01) ,96448 (+00)
1.7  ~,29073 (+01) -,29073 (+01) y21081 (+01)
1.8  -,26435 (+01) -126435 (+o1) 131479 (+01)
1.9 -,22824 (+o01) -,22824 (+o01) 140484 (+01)
2.9 -,18394 (+01) -,18394 (+01) y47824 (+01)
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% V(3.5/¢) V(3.5/%) V' (3.5/%)
Lie Series Table /33/ Lie'Series
0.0 »00000 (+00) s00000 (+00) . 0,23937..(+o1)
0l 124076 (+00) 424076 (+00) 124357 (+01)
0.2 ,48999 (+00) 148999 (+00) 125634 (+01)
0.3 ,75648 (+00) ,75647 (+00) ,27820 (+01)
0.4 10497 (+01) 110497 (+01) 130999 (+o01)
045 »13802 (+01) »13802 (+01) 135301 (+01)
0.6 y17600 (+01) »17600 (+01) »40900 (+o01)
0.7 »22033 (+01) 122033 (+o01) »48025 (+41)
0.8 27266 (+01) ,27266 (+01) 156974 (+o01)
0.9 »33501 (+01) »33501 (+01) 168126 (+01).
1.0 y40980 (+01) ,40980 (+01) 181962 (+01)
1.1 »50003 (+01) y50002 (+01) »99089 (+01)
1.2 ,60933 (+01) 160933 (+01) »12027 (+02)
1.3 »74225 (+01) » 74224 (+ot) »14649 (+02)
1.4 y90440 (+01) »90439 (+01) »17896 (+02)
1.5 »11028 (+02) ,11028 (+02) 121924 (+02)
1.6 »13461 (+02) y13461 (+02) »26930 (+02)
1.7 116454 (+02) 116454 (+02) ,33164 (+02)
1.8 »20145 (+02) »20145 (+02) ,40945 (+02)
1.9 124708 (+02) 24708 (+02) ,50683 . (+02)
2.0 »30364 (+02) y30364 (+02) »62898 (+02)
2.1 137393 (+02) 137393 (+02) ,78264 (+02)
119




v(2.0/t)

Lie Series

7(2.0/%)

Table /33/

V1(2.0/t)

Lie Series

006

134311 (+00)
139591 (+00)
145665 (+00)
152660 (+00)
»60721 (+00)

170024 (+00)

,80774 (+00)

193217 (+00)
y10764 (+01)
»12440 (+01)
»14390 (+o01)
,16665 (+01)
419325 (+01)
,2?442 (+01)

426104 (+o1)

230418 (+01)

1435514 (+o1)

141551 (+01)
»48722 (401)
257267 (+o1)

- 467480 (4+01)

»79725 (+01)

134311 (+00)
139591 (+00)
145665 (+00)
»52660 {+00)
»60721 (+00)
yT70024 (+00)
»80T7  (+00)
193217 (+00)
»10764 (+o01)
y12440 (+01)
»14390 (+01)
»16665 (+o1)
»19325 (+01)

122442 (+o1)

126104 (+01)
»30418 (+01)
135514 (+o1)
»41551 (+o01)
»48722 (+01)
+5T7267 (+o1)
,67480 (+01)
179725 (+01)

449200 (+00)
456581 (+00)
465118 (+00)
,75012 (+00)
+86507 (+00)
199893 (+00)
»11552 (+01)
y13381 (+01)
»15528 . (+01)
+18054 (+01)

»21035 (+01)

- 424563 (+01)

128751 (+o1)
33735 (+01)
»39686 (+01)
46812 (+01)
»55371 (+o01)
,65682 (+01)
»78142 (+01)
»93247 (+01)
411162 (+02)

113402 {+02)

rad




t u(~-1.5/t) U(-1.5/t) _ U (~-1.5/%)
Lie Series Table /33/ lie Series

6.0 ;00000 (+00) ,00000 (+00)" 10000 (+01)
0.1 ,99750 (-o1) »9975  (-o01) 199251 (+00)
0.2 ,19801 (+00) ,19801 (+00) ,97025 (+00)
0.3 29333 (+00) 129333 (+00) 193575 (+00)
0.4 138432 (400) 138432 (+00) 488393 (+oo)
0.5 146971 (+00) 246971 (+00) 182198 (+00)
0.6 »54836 (+00) 454836 (+00) 174942 -(+00)
0.7 ,61929 (+00) 61929 (+00) - 466795 (+o00)
0.8 168171 (+00) 68171 (+00) +57945 (+00)
0.9 +73502 (+00) »73502 (+00) 148593 (+00)
1.0 ,77880 (+00) »77880 (+00) »38940 (+00)
1.1 ,81287 (+00) ,81287 (+00) 29189 (+o0)
1.2 ,83721 (+00) ,83721 (+00) 119535 (+00)
1.3 ,85203 (+00) 485203 (+00) 110159 (+o00)
1.4 ,85768 (+00) 185768 (+00) 112253 (-o01)
1.5 +85467 (+o00) 85467 (+00) -,71223 (-o01)
1.6 484367 (+00) 484367 (+00) -,14764 (+00)
1.7 »82541 (+00) »82541 (+00) -,21606 (+00)
1.8 480074 (+00) 480074 (+00) "-,27581 (+00)
1.9 ,77055 (+00) »17055 (+00) > =332647 (+o00)
2.0 »73576 -(+00) »73576 (+00) - =,36788 (+o0)
2.1 »69728 (+00) ,69728 (+00) -s40011 (+00)
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t v(-2.0/t) V(-2.0/t) Vi(-2.0/t)
Lie Series Table /33/ ﬁie Series

0.0 =,45748 (+00) = ,45748 (+00) -,65600 (+00)
0.1 -,51829 (+00) -,51829 (+00) -4,55830 (+00)
0.2 -,56878 (+00) -,56877 (+00) -»44973 (+00)
0.3 -,60796 (+00) -460796 (+00) -,33280 (+00)
0.4 -,63515 (+o00) -163515 (+00) -»21021 (+00)
0.5 -,64991 (+o00) -164991 (+00) -,84769 (-o1)
0.6 ~-,65210 (+00) -,65210 (+00) »40696 {(-01)
0.7 -,64186 (+00) -,64186 (+00) 416344 (+00)
0.8 =-,61959 (+00) -161959 (+00) ,28089 (+00)
0.9 -,58594 (+00) -158594 (+00) 139072 (+00)
1.0 -,54177 (+00) -»54177 (+00) 1449093 (+00)
1.1 -,48813 (+00) -,48813 (+00) ,57986 (+00)
1.2 -,42621 (+00) -,42621 (+00) ,65631 (+00)
1.3 =,35731 (+00) 135731 (+o00) »71947 (+00)
1.4 -,28277 (+00) -,28278 (+00) »76899 (+00)
1.5 -,20396 (+00) -,20396 (+00) »80496 (+o00)
1.6 -,12222 (+00) -,12222 (+00) »82786 (+00)
1.7 -,38797 (-o01) -,3880 (-o1) »83855 (+00)
1.8 245127 (-01) »45127 (-o01) ,83822 (+00)
1.9 »12853 (+00) ,12852 (+00) ,82834 (+00)
2.0 121053 (+00) »21053 (+00) ,81060 (+00)

122



Appendix

-,lolviné Eq.(IV,33) by Means of Laplace Transformation by A.SCHETT.

'We start from Eq.(IV,33), having the form:
P(t) = 2n(%) + ;—:T Zr(t) + » Z(t) = 0 (1)

where t°> O is the point at which the solution function is expanded.

Applying‘Laplace transformation

L(!} -0 (2)

%0 this equation, one obtains:

w2t ote 24 o8 8t z(0) t_z'(0)
-(.) +§(, » _52 -2z tTazE <O (3)

which 1- solved by:

taking into account that §(s=e) = O.

After some amount of work, one obtains for S(s);

7 ()] ,
,S(' -z;o; goz s gtl d ) sz(g)+z 2(o) (5)
o

x+8 ds("' H + 8

PThe solution function Z(t) is given by:
x+i0©

Z(t) = 2—11[1- e®¥£(s)ds (6)
x-i0®

Making use of (34) and (35), (30) is solved by:

2(+) = (o8 wt = 8,(%))2(t=0) + (BAEE _ 5 (1))z(t=0) (7)
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with
x+i00 ) .
1 8t 1 : 14\ s
-61 (t) - m—x:(i”{es ‘N.2+52 gt! dﬂ(\’) [K2+32 J} ds (8)
and .
x+ico ( )
d v
_62("5) = 5}{1— x’.(iw [est 'u';;sz ; t;)’ d_s—(”) [uzlsg ]} ds (9)

Making use of the convolution and multiplications theorems of Laplace

transformation theory, 61 and 62 can be evaluated:

4
. v
51(t) - - Li%l— ' I1(u1)Io(u[t-a Yax (10)
]

%

62(t) - 131%::1 TVIo(uT)IO(u[t-T])dT (11)
v t, :
Q

where I° is the zero order Bessel function and I, the first order
Bessel function.

These integrals are tabulated (e.g., Tables of Integral Transforms,
Vol.Z2, Erdélyi, Magnus and Oberhettinger, Tricomi, IMc Graw-Hill

Book Company Inc.1954, S 354).

Remark: The recurrence formulas obtained by using Lie series (Eq.(IV,34))
do not allow the terms occurring in 61 and 62 to be ordered according
to powers of 1/t0. This is advantageous for numerical calculations,
a8 this factor produces a good convergence. The method of Laplace
transformations yields 61 and 62 in a closed form, ordered according
to powers of 1/to. Thege are two advantages compared to the represen-

tation by means of recurrence formulas.
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